Assessment of left ventricular function using solid-state gamma camera equipped with a highly-sensitive collimator

Shin-ichiro Kumita,* Keiji Tanaka,** Keiichi Cho,* Naoki Sato,** Hidenobu Nakajo,*
Masahiro Toba,* Yoshimitsu Fukushima,* Sunao Mizumura,*
Teruo Takano** and Tatsuo Kumazaki*

*Department of Radiology, and **First Department of Internal Medicine, Nippon Medical School

Purpose: The solid-state gamma camera 2020tc ImagerTM (Digirad, CA) is now commercially available and has been clinically applied. The present study evaluates the feasibility of equilibrium radionuclide ventriculography (ERNV) within a 3 min period using this camera equipped with a highly sensitive collimator. *Materials and Methods:* ERNV was performed from the best septal position (left anterior oblique view) in 20 patients with cardiac disease using a single detector angertype gamma camera equipped with a low-energy, high-resolution collimator. Immediately thereafter, we performed a second ERNV using the solid-state gamma camera equipped with a highly sensitive collimator. Acquisition periods were 10 and 3 min, respectively. *Results:* Significantly more counts were collected from over the left ventricle with the solid-state gamma camera over 3 min than those with the anger-type gamma camera over 10 min (817.1 \pm 387.8 k counts vs. 668.2 \pm 327.4 k counts, p < 0.01). The left ventricular ejection fraction obtained from ERNV data using the solid-state gamma camera correlated closely with those acquired by the anger-type gamma camera (r = 0.94, p < 0.0001, SEE = 5.93%). *Conclusion:* The results showed that the solid-state gamma camera could assess left ventricular function with excellent data collection efficiency and high reliability.

Key words: left ventricular ejection fraction, solid-state gamma camera, equilibrium radionuclide ventriculography, highly sensitive collimator