Annals of Nuclear Medicine Vol. 17, No. 2, 123-130, 2003

Effect of sabcomeline on muscarinic and dopamine receptor binding in intact mouse brain

Rie Hosoi,* Kaoru Kobayashi,* Junichi Ishida,** Masatoshi YaMaguchi*** and Osamu Inoue*

*Department of Medical Physics, School of Allied Health Sciences, Faculty of Medicine, Osaka University **Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Fukuoka University

Sabcomeline $[(R-(Z)-(+)-\alpha-(methoxyiamino)-1-azabicyclo[2.2.2]octane-3-acetonitrile)]$ is a potent and functionally selective muscarinic M_1 receptor partial agonist. However, little is known of the binding properties of sabcomeline under *in vivo* conditions. In this study, muscarinic receptor occupancy by sabcomeline in mouse brain regions and heart was estimated using [³H]quinuclidinyl benzilate (QNB) and [³H]*N*-methylpiperidyl benzilate (NMPB) as radioligands. In the cerebral cortex, hippocampus, and striatum, the estimated IC50 value of sabcomeline for [3H]NMPB binding was almost 0.2 mg/kg. Sabcomeline was not a selective ligand to M_1 receptors as compared with biperiden in vivo. In the cerebral cortex, maximum receptor occupancy was observed about 1 hr after intravenous injection of sabcomeline (0.3 mg/kg), and the binding availability of mACh receptors had almost returned to the control level by 3-4 hr. These findings indicated that the binding kinetics of sabcomeline is rather rapid in mouse brain. Examination of dopamine D_2 receptor binding revealed that sabcomeline affected the kinetics of both [³H]raclopride and [³H]N-methylspiperone (NMSP) binding in the striatum. It significantly decreased the k_3 and k_4 of [³H]raclopride binding resulting in an increase in binding potential (BP = $k_3/k_4 = B_{max}/K_d$) in sabcomeline-treated mice, and an approximately 15% decrease in k_3 of [³H]NMSP binding was also observed. Although the mechanism is still unclear, sabcomeline altered dopamine D_2 receptor affinity or availability by modulations via neural networks.

Key words: sabcomeline, mice, *in vivo*, muscarinic acetylcholine receptor, dopamine D₂ receptor