Annals of Nuclear Medicine Vol. 17, No. 1, 73-77, 2003

Age-related changes of the binding of [³H]SA4503 to sigma₁ receptors in the rat brain

Kiichi Ishiwata,* Tadayuki Kobayashi,** Kazunori Kawamura*,*** and Kiyoshi Matsuno****

*Positron Medical Center, Tokyo Metropolitan Institute of Gerontology **M's Science Co. ***SHI Accelerator Service Co. Ltd. ****Nara Research and Development Center, Santen Pharmaceutical Co. Ltd.

We have recently developed $1-([3-O-methyl-^{11}C]3,4-dimethoxyphenethyl)-4-(3-phenylpropyl) piperazine ([^{11}C]SA4503) as a selective radioligand for mapping sigma₁ receptors in the brain by positron emission tomography (PET). In the present short communication we evaluated the age-related changes of the binding of this ligand to sigma₁ receptors in Fisher-344 rats (1.5-, 6-, 12-, and 24-month-old) by the$ *in vitro* $binding assay. We also measured the binding of [^3H](+)-pentazocine to sigma₁ receptors and the binding of [^3H]1,3-di-O-tolylguanidine to sigma₂ receptors, which are current standard methods. The specific binding of the three radioligands increased age-dependently. Both K_d and B_{max} values of the 24-month-old). The increased numbers of both sigma₁ and sigma₂ receptor subtypes in the aged rats compensate for the lowered affinity, and rather enhanced the radioligand-receptor binding. The results contrast strikingly with the age-dependent decrease in the dopaminergic, cholinergic and glutamatergic receptors that are reported to be correlated with the sigma receptors, and indicate that a PET study with [^{11}C]SA4503 to evaluate the aging process in humans would be of great interest.$

Key words: [¹¹C]SA4503, sigma₁ receptor, aging, rat