Experimental radioimmunotherapy with ¹⁸⁶Re-MAG3-A7 anti-colorectal cancer monoclonal antibody: Comparison with ¹³¹I-counterpart Seigo Kınuya, * Kunihiko Yokoyama, * Katsutoshi Kobayashi, ** Shoji Мотоіshi, ** Katsuyuki Onoma,** Naoto Watanabe,*** Noriyuki Shuke,**** Hisashi Bunko,**** Takatoshi Michigishi* and Norihisa Tonami* *Department of Nuclear Medicine, Kanazawa University School of Medicine **Production Division, Department of Research Reactor, Division of Radioisotopes, Japan Atomic Energy Research Institute ***Department of Radiology, Toyama Medical and Pharmaceutical University ****Department of Radiology, Asahikawa Medical College *****Medical Informatics, Kanazawa University Hospital A murine IgG₁ against a Mr 45 kD tumor-associated glycoprotein in human colorectal cancer, A7, was radiolabeled with ¹⁸⁶Re by a chelating method with a mercaptoacetyltriglycine (MAG3). Its specific activity was 119 MBq/mg, which would be high enough for a therapeutic purpose, and its immunoreactivity was preserved well as was ¹³¹I-A7 labeled by the chloramine-T method. Growth of human colon cancer xenografts, 9.14 ± 0.44 mm in diameter, in nude mice was significantly suppressed by an intravenous dose of 4.48 MBq of ¹⁸⁶Re-A7. The therapeutic outcome with ¹⁸⁶Re-A7 was better than that with 4.63 MBq of ¹³¹I-A7. Toxicity of treatments assessed by body weight change was similar with both conjugates. These results are likely caused by the tumor size and more favorable physical properties of ¹⁸⁶Re than those of ¹³¹I. Key words: radioimmunotherapy, ¹⁸⁶Re, colon cancer xenograft ## INTRODUCTION ¹³¹I is the radionuclide that has been most widely used to label monoclonal antibody (MAb) for radioimmunotherapy (RIT).^{1,2} One of major disadvantages of ¹³¹I is high energy γ emission, 364 keV, that is not ideal for gamma detection and exposes patients to unnecessary radiation. ¹⁸⁶Re appears to be a suitable radionuclide for RIT with its appropriate physical half-life of 3.7 days that is long enough for MAb to localize tumors and short enough to minimize toxicity in the whole body. Abundant intermediate energy β emission (71% of 1.07 MeV and 21% of 0.94 MeV) is comparable to 131 I, and γ emission of 137 keV (9%) that is suitable for external detection with gamma cameras, which may provide more accurate tissue absorbed radiation dose estimation than with ¹³¹I, and produces a less nonspecific radiation dose than ¹³¹I. ¹⁸⁶Re has similar chemical properties to ^{99m}Tc. Although 99mTc-MAb is now widely used for radioimmunoscintigraphy (RIS),^{3,4} radiolabeling is performed by a direct labeling method that is not ideal for ¹⁸⁶Re because of the instability of directly labeled ¹⁸⁶Re-MAb,⁵ so that indirect methods with ligands such as N2S2, N2S4 and N3S compounds have been investigated. 6-9 Among these, a prechelating labeling method with S-benzoylmercaptoacetyltriglycine (MAG3), an N₃S ligand, appears to be a good choice because of its in vivo stability and possible high specific activity of labeled MAb.8 In this study of a mouse model xenografted with human colon cancer cells, we sought to determine the efficacy of RIT of ¹⁸⁶Re-MAG3-MAb. This study was performed as a part of the Working Group on Radioactive Rhenium supported by the Consultative Committee of Research on Received November 20, 2000, revision accepted February 1, For reprint contact: Seigo Kinuya, M.D., Department of Nuclear Medicine, Kanazawa University School of Medicine, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, JAPAN. E-mail: kinuya@med.kanazawa-u.ac.jp Vol. 15, No. 3, 2001 Radioisotopes and the Subcommittee for Production and Radiolabeling in the Japan Atomic Energy Research Institute. ## MATERIALS AND METHODS A7, an IgG₁ murine MAb recognizing Mr 45,000 tumorassociated glycoprotein of colorectal cancer, was used. 10 ¹⁸⁶Re-perrhenate (¹⁸⁶ReO⁴-) was produced by ¹⁸⁵Re(n, \aleph) reaction (Japan Atomic Energy Research Institute, Tokaimura, Japan) at a specific activity of 19.0 TBq/g, chelated with S-benzoyl-mercaptoacetyltriglycine (MAG3) (a gift from Dr. Yasushi Arano) and conjugated to A7.8 Briefly, the mixture of ¹⁸⁶ReO⁴⁻, SnCl₂ and Sbenzoyl-MAG3 at the molar ratios of 2.3:1 for S-benzoyl-MAG3: Re and 8.0:1 for Sn²⁺: Re was heated under an N₂ stream, resulting in ¹⁸⁶Re-MAG3, which was conjugated to A7 after esterification with 2.3.5.6tetrafluorophenol (TFP) (Nacalai Tesque, Kyoto). 186Re-MAG3-A7 was then purified on a PD10 column (Pharmacia LKB Biotechnology, Uppsala, Sweden) with 5 mg/ml ascorbic acid as an eluant to prevent the radiolysis of the MAb. Immunoreactivity of ¹⁸⁶Re-MAG3-A7 was determined with 1.6×10^5 to 3×10^6 of LS180 human colon carcinoma cells (American Type Culture Collection, Rockville, MD, USA) as described by Lindmo et al.11 The labeled MAb was sterilized by means of a filter (Millex-GV, 0.22 mm; Millipore, Bedford, MA, USA) prior to further experiments. Animal studies were performed in compliance with the regulations of our institution. LS180 cells were grown in DMEM medium (Nissui Seiyaku, Tokyo), harvested with 0.1% trypsin, and then 5×10^6 of cells were subcutaneously xenografted into the thigh of Balb/c nu/nu mice (female, 20 g; NINOX Labo Supply Inc., Ishikawa). Tumor volume (mm³) was calculated as length (mm) × width $(mm)^2 \times 0.5$, and expressed as the ratio of volume to the volume on day 0 (the day of starting the treatment). Tumor volume on day 0 was $376 \pm 46 \text{ mm}^3$ and the diameter was 9.14 ± 0.44 mm. The tumoricidal activity of a dose of 4.48 MBq (121 μ Ci) of ¹⁸⁶Re-A7 was determined (n = 9). As a comparison, the therapeutic effect of 4.63 MBq (125 μ Ci) of ¹³¹I-A7 labeled by the chloramine-T method was observed in the same model (n = 8). Tumor growth in non-treated mice was also observed as a reference (n = 5). Toxicity of the treatment was assessed by body weight loss of the animals. Absorbed radiation dose in tissue with ¹⁸⁶Re-A7 was estimated under the assumption that ¹⁸⁶Re-A7 would show similar biodistribution to ¹³¹I-A7: with the labeling condition yielding an appropriate conjugation ratio of ¹⁸⁶Re-MAG3 to MAb, ¹⁸⁶Re-MAbs was cleared from the circulation and accumulated into tumors similarly to ¹²⁵I-MAbs, and distribution of ¹⁸⁶Re-MAbs in normal tissue did not vary from that of ¹²⁵I-MAbs with some exceptions in gastric accumulation and their excretion routes. ^{12,13} Fig. 1 Growth of LS180 human colon cancer xenografts in mice, expressed as a ratio of volumes to the volume obtained on day 0 (mean \pm SEM). (\times), control; (\bullet), ¹³¹I-A7 4.63 MBq; (\blacksquare), ¹⁸⁶Re-A7 4.48 MBq. *, p < 0.0001 vs. control; †, p < 0.05 vs. ¹³¹I-A7. Table 1 Experimental groups and therapeutic results | | Relative tumor volume
On day 19 | Maximum body
weight loss (%) | |-------------------------------|-------------------------------------|---------------------------------| | Control | $(8.79 \pm 1.13 \text{ on day } 6)$ | | | ¹³¹ I-A7 4.63 MBq | 9.33 ± 1.27 | 14.8 ± 2.01 | | ¹⁸⁶ Re-A7 4.48 MBq | $5.35 \pm 0.77*$ | 15.4 ± 2.11 | ^{*}p < 0.02 versus other RIT groups. n = 5-9. Table 2 Tissue absorbed radiation doses (Gy) | ¹³¹ I-A7 4.63 MBq | ¹⁸⁶ Re-A7 4.48 MBq | |------------------------------|---| | 11.00 | 16.34 | | 6.79 | 10.24 | | 1.30 | 1.89 | | 1.39 | 2.02 | | 1.25 | 1.83 | | 0.57 | 0.82 | | 0.40 | 0.56 | | 0.42 | 0.63 | | 1.52 | 2.06 | | | 11.00
6.79
1.30
1.39
1.25
0.57
0.40
0.42 | Estimated using the data published in reference 14, assuming the same biodistribution with ¹³¹I-A7 and ¹⁸⁶Re-A7. These were demonstrated in both normal mice and tumorbearing mice. In the estimation, we used the previous biodistribution data obtained with ¹²⁵I-A7, ¹⁴ and the physical half lives of ¹⁸⁶Re and ¹³¹I were adapted to the data to obtain effective cumulative radioactivity within tissue for ¹⁸⁶Re and ¹³¹I. Absorbed radiation dose was estimated by the formula: $D_{\beta} = \mu Ci \times h \times g^{-1} \times E$, where E of ¹³¹I = 0.3985 and E of $^{186}\text{Re} = 0.73.^{13}$ The contribution of γ emission was neglected in the calculation. ## **RESULTS** The efficiency of ¹⁸⁶Re-MAG3-TFP production was 74%, and 60% of ¹⁸⁶Re-MAG3-TFP was conjugated to A7. The specific activity of ¹⁸⁶Re-A7 was 119 MBq/mg, and its immunoreactivity at infinite antigen excess was 72%. Those of ¹³¹I-A7 were 140 MBq/mg and 71%. RIT with ¹⁸⁶Re-A7 significantly suppressed the growth of xenografts as compared to no treatment (Fig. 1 and Table 1). A dose of 4.48 MBq of ¹⁸⁶Re-A7 showed better tumor suppression than did a dose of 4.63 MBq of ¹³¹I-A7. Maximum body weight loss was similar with both conjugates at this dose level (Table 1), but the loss with ¹³¹I-A7 tended to appear later and persist longer than that with ¹⁸⁶Re-A7: a nadir on day 6 with ¹⁸⁶Re-A7 and on day 12 with ¹³¹I-A7. No mouse died from the treatment during the observation period. Estimated tissue absorbed radiation doses are shown in Table 2. The absorbed radiation dose caused by β emissions to the tumor with a dose of 4.48 MBq of ¹⁸⁶Re-A7 was 1.67-fold greater than that with 4.63 MBq of ¹³¹I-A7. Doses absorbed by normal tissue from β emissions were approximately 1.5-fold greater with ¹⁸⁶Re-A7. ## **DISCUSSION** A7 MAb was able to be labeled with ¹⁸⁶Re-MAG3 at sufficiently high specific activity for a therapeutic purpose, and its immunoreactivity was well preserved. We found significant tumoricidal effect of ¹⁸⁶Re-A7 *in vivo*, and ¹⁸⁶Re-A7 produced better tumor response than did ¹³¹I-A7 at the similar dose level. Estimation of the tissue absorbed radiation dose indicates that ¹⁸⁶Re-A7 produced a much greater tumor dose than ¹³¹I-A7, which would be the major reason for the better outcome with ¹⁸⁶Re-A7. The size of tumors may be another factor in the more pronounced tumor suppression with ¹⁸⁶Re-A7 than ¹³¹I-A7. The efficacy of RIT is affected by the properties of the radionuclide labeled to MAbs, and a mathematical model assuming uniform radionuclide distribution in tumors indicates that the optimal cure tumor size for β -particles of ¹⁸⁶Re (71% of 1.07 MeV and 21% of 0.94 MeV) is 7.0– 12.0 mm in diameter in contrast to 2.6–5.0 mm for ¹³¹I (86% of 0.606 MeV and 13% of 0.336 MeV).15 Kievit et al. 13 reported the slight superiority of 131 I-MAb to 186 Re-MAb in 5.0-7.0 mm ovarian cancer xenografts delivered with the equal tumor absorbed dose by two conjugates, concluding that the tumor size contributed to producing these findings. In contrast, the diameter of tumors used in this study was 9.14 ± 0.44 mm, being within the optimal cure range for ¹⁸⁶Re. In current clinical settings, patients with recurrent lesions and metastatic lesions are candidates for RIT. In general, the minimal size of a tumor that is detectable with imaging methods is around 1 cm, which is within the suitable range for the β -particles of ¹⁸⁶Re. In addition, to treating larger tumors, the so-called cross-fire effect from radiolabeled MAbs heterogeneously distributed within tumors may be more significant with β -particles of ¹⁸⁶Re than those of ¹³¹I. These several factors suggest the superiority of ¹⁸⁶Re-A7 to ¹³¹I-A7 as an RIT compound. Body weight was monitored to assess the toxicity of treatments, indicating that maximum body weight loss in the group treated with a dose of 4.48 MBq of ¹⁸⁶Re-A7 was similar to that with 4.63 MBq of ¹³¹I-A7. In contrast, absorbed radiation doses within normal tissues including whole body doses were approximately 1.5-fold greater with ¹⁸⁶Re-A7 than with ¹³¹I-A7 at these doses. We neglected the contribution of γ emissions in the estimation of tissue radiation dosimetry, and abundant high energy γ emission of 364 keV of ¹³¹I may have produced a considerable whole body radiation dose, as compared with the lower energy γ emission of ¹⁸⁶Re, so that the actual whole body radiation dose with ¹³¹I-A7 is likely to be closer to that with ¹⁸⁶Re-A7 than shown in Table 2, which made the toxicity similar with both conjugates. yemissions would contribute to the whole body dose in human subjects more significantly than in small animals, suggesting that the advantage of ¹⁸⁶Re-A7 over ¹³¹I-A7 would be greater in human subjects than in animals with regard to toxicity. The different profile in terms of the duration of body weight loss with two conjugates may depend on the difference between the physical half-lives of these radionuclides. In conclusion, RIT with ¹⁸⁶Re-A7 suppressed the growth of colon cancer xenografts more effectively than that with ¹³¹I-A7 at a similar dose level. They were equally toxic when assessed by body weight change. These results are likely to be caused by the tumor size treated in this study and the more favorable physical properties of ¹⁸⁶Re than those of ¹³¹I. ## **ACKNOWLEDGMENTS** We thank former Professor Toshio Takahashi and Dr. Toshiharu Yamaguchi, First Department of Surgery, Kyoto Prefectural University of Medicine, for providing A7 MAb, and Dr. Yasushi Arano, Faculty of Pharmaceutical Sciences, Kyoto University (currently Professor of Faculty of Pharmaceutical Sciences, Chiba University), for providing S-benzoyl-MAG3. ## REFERENCES - Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, et al. Radioimmunotherapy of B-cell lymphoma with [¹³¹I]anti-B1 (anti-CD20) antibody. *N Engl J Med* 1993; 329: 459–465. - 2. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. *N Engl J* Vol. 15, No. 3, 2001 Original Article **201** - Med 1993; 329; 1219-1224. - 3. Behr TM, Becker WS, Bair H-J, Klein MW, Stühler CM, Cidlinsky KP, et al. Comparison of complete versus fragmented technetium-99m-labeled anti-CEA monoclonal antibodies for immunoscintigraphy in colorectal cancer. J Nucl Med 1995; 36: 430-441. - 4. Oriuchi N, Endo K, Watanabe N, Sugiyama S, Asao T, Takenoshita S, et al. Semiquantitative SPECT tumor uptake of technetium-99m-labeled anti-CEA monoclonal antibody in colorectal tumor. J Nucl Med 1995; 36: 679-683. - 5. Griffiths GL, Goldenberg DM, Knapp FF Jr, Callahan AP, Chang C-H. Direct radiolabeling of monoclonal antibodies with generator-produced rhenium-188 for radioimmunotherapy: labeling and animal biodistribution studies. Cancer Res 1991; 51: 4594-4602. - 6. Fritzberg AR. Advances in ^{99m}Tc-labeling of antibodies. Nucl Med 1987; 26: 7-12. - 7. Najafi A, Alauddin MM, Sosa A, Ma GQ, Chen DCP, Epstein AL, et al. The evaluation of ¹⁸⁶Re-labeled antibodies using N2S4 chelate in vitro and in vivo using tumorbearing nude mice. Nucl Med Biol 1992; 19: 205-212. - 8. Visser GMW, Gerretsen M, Herscheid JDM, Snow GB, van Dongen GAMS. Labeling of monoclonal antibodies with rhenium-186 using MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 1993; 34: 1953- - 9. Goldrosen MH, Biddle WC, Pancook J, Bakshi S, Vanderheyden J-L, Fritzberg AR, et al. Biodistribution. pharmacokinetic, and imaging studies with ¹⁸⁶Re-labeled - NR-LU-10 whole antibody in LS174T colonic tumor-bearing mice. Cancer Res 1990; 50: 7973-7978, - 10. Kotanagi H, Takahashi T, Masuko T, Hashimoto Y, Koyama K. A monoclonal antibody against human colon cancers. Tohoku J Exp Med 1986; 148: 353-360. - 11. Lindmo T, Boven E, Cuttitta C, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 1984; 72: 77-89. - 12. van Gog FB, Visser GWM, Klok R, van der Schos R, Snow GB, van Dongen GAMS. Monoclonal antibodies labeled with rhenium-186 using MAG3 chelate: relationship between the number of chelated groups and biodistribution characteristics. J Nucl Med 1996; 37: 352-362. - 13. Kievit E, van Gog FB, Schluper HMM, van Dongen GAMS, Pinedo HM, Boven E. Comparison of the biodistribution and the efficacy of monoclonal antibody 323/A3 labeled with either ¹³¹I or ¹⁸⁶Re in human ovarian cancer xenografts. Int J Radiat Oncol Biol Phys 1997; 38: 813-823. - 14. Kinuya S, Yokoyama K, Kawashima A, Hiramatsu T, Konishi S, Shuke N, et al. Pharmacologic intervention with angiotensin II and kininase inhibitor enhanced efficacy of radioimmunotherapy in human colon cancer xenografts. J Nucl Med 2000; 41: 1244-1249. - 15. O'Donoghue JA, Bardies M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 1995; 36: 1902-1909.