Annals of Nuclear Medicine Vol. 15, No. 3, 293-296, 2001

Copper-62 ATSM as a hypoxic tissue tracer in myocardial ischemia

Norio Takahashi,* Yasuhisa Fujibayashi,** Yoshiharu Yonekura,** Michael J. Welch,**** Atsuo Waki,** Tatsuro Tsuchida,* Norihiro Sadato,** Katsuya Sugimoto,* Akira Nakano,*** Jong-Dae Lee*** and Harumi Itoh*

*Department of Radiology, **Biomedical Imaging Research Center, and ***First Department of Internal Medicine, Fukui Medical University, Fukui, Japan ****Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA

Copper-62 labeled diacetyl-bis(*N*⁴-methylthiosemicarbazone) (⁶²Cu-ATSM) has been proposed as a generator produced positron-emitting tracer for hypoxic tissue imaging. To clarify the usefulness of ⁶²Cu-ATSM for myocardial ischemia, ⁶²Cu-ATSM PET was performed in 7 patients with coronary artery disease. Increased myocardial uptake of ⁶²Cu-ATSM was observed (myocardium/ blood ratio: 3.09) in one patient with unstable angina, who had increased ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) uptake under the fasting condition. The other 6 patients, who were clinically stable, did not have increased ⁶²Cu-ATSM uptake, although abnormal ¹⁸F-FDG uptake was seen in 4 patients. This preliminary study suggests that ⁶²Cu-ATSM is a promising PET tracer for hypoxic imaging in acute ischemia.

Key words: copper-62 ATSM, hypoxia, coronary artery disease, fluorine-18 FDG, PET