Experimental radioimmunotherapy with ¹⁸⁶Re-MAG3-A7 anti-colorectal cancer monoclonal antibody: Comparison with ¹³¹I-counterpart

Seigo Kinuya,* Kunihiko Yokoyama,* Katsutoshi Kobayashi,** Shoji Motoishi,** Katsuyuki Onoma,** Naoto Watanabe,*** Noriyuki Shuke,**** Hisashi Bunko,***** Takatoshi Michigishi* and Norihisa Tonami*

*Department of Nuclear Medicine, Kanazawa University School of Medicine

**Production Division, Department of Research Reactor, Division of Radioisotopes,

Japan Atomic Energy Research Institute

***Department of Radiology, Toyama Medical and Pharmaceutical University

****Department of Radiology, Asahikawa Medical College

****Medical Informatics, Kanazawa University Hospital

A murine IgG_1 against a Mr 45 kD tumor-associated glycoprotein in human colorectal cancer, A7, was radiolabeled with ^{186}Re by a chelating method with a mercaptoacetyltriglycine (MAG3). Its specific activity was 119 MBq/mg, which would be high enough for a therapeutic purpose, and its immunoreactivity was preserved well as was ^{131}I -A7 labeled by the chloramine-T method. Growth of human colon cancer xenografts, 9.14 ± 0.44 mm in diameter, in nude mice was significantly suppressed by an intravenous dose of 4.48 MBq of ^{186}Re -A7. The therapeutic outcome with ^{186}Re -A7 was better than that with 4.63 MBq of ^{131}I -A7. Toxicity of treatments assessed by body weight change was similar with both conjugates. These results are likely caused by the tumor size and more favorable physical properties of ^{186}Re than those of ^{131}I .

Key words: radioimmunotherapy, ¹⁸⁶Re, colon cancer xenograft