Different sensitivities to competitive inhibition of benzodiazepine receptor binding of ¹¹C-iomazenil and ¹¹C-flumazenil in rhesus monkey brain

Osamu Inoue,* Rie Hosoi,* Kaoru Kobayashi,* Takashi Itoh,**
Antony Gee*** and Kazutoshi Suzuki****

*School of Allied Health Sciences, Faculty of Medicine, Osaka University

**Nippon Medical School, Center for Information Science

***PET Centre, Aarhus University Hospital, Denmark

***National Institute of Radiological Sciences

The *in vivo* binding kinetics of 11 C-iomazenil were compared with those of 11 C-flumazenil binding in rhesus monkey brain. The monkey was anesthetized with ketamine and intravenously injected with either 11 C-iomazenil or 11 C-flumazenil in combination with the coadministration of different doses of non-radioactive flumazenil (0, 5 and 20 μ g/kg).

The regional distribution of 11 C-iomazenil in the brain was similar to that of 11 C-flumazenil, but the sensitivity of 11 C-iomazenil binding to competitive inhibition by non-radioactive flumazenil was much less than that of 11 C-flumazenil binding. A significant reduction in 11 C-flumazenil binding in the cerebral cortex was observed with 20 μ g/kg of flumazenil, whereas a relatively smaller inhibition of 11 C-iomazenil binding in the same region was observed with the same dose of flumazenil. These results suggest that 11 C-flumazenil may be a superior radiotracer for estimating benzodiazepine receptor occupancy in the intact brain.

Key words: ¹¹C-iomazenil, ¹¹C-flumazenil, benzodiazepine receptors, rhesus monkey, PET