Annals of Nuclear Medicine Vol. 14, No. 5, 323-328, 2000

Evaluation of 62 Cu labeled diacetyl-bis(N^4 -methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer

Norio Takahashi,* Yasuhisa Fujibayashi,** Yoshiharu Yonekura,** Michael J. Welch,*** Atsuo Waki,** Tatsuro Tsuchida,* Norihiro Sadato,** Katsuya Sugimoto* and Harumi Itoh*

*Department of Radiology and **Biomedical Imaging Research Center, Fukui Medical University, Fukui, Japan ***Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA

⁶²Cu labeled diacetyl-bis(N^4 -methylthiosemicarbazone) (⁶²Cu-ATSM) has been proposed as a generator-produced, positron-emitting tracer for hypoxic tissue imaging. From basic studies, the retention mechanism of ⁶²Cu-ATSM is considered to be closely related to cytosolic/microsomal bioreduction, a possible system for hypoxic bioreductive drug activation. In order to evaluate the characteristics of ⁶²Cu-ATSM, PET studies were performed in 4 normal subjects and 6 patients with lung cancer. ⁶²Cu-ATSM cleared rapidly from the blood with little lung uptake (0.43 ± 0.09, uptake ratio; divided by the arterial input function) in normal subjects. Intense tumor uptake of ⁶²Cu-ATSM was observed in all patients with lung cancer (3.00 ± 1.50). A negative correlation was observed between blood flow and flow-normalized ⁶²Cu-ATSM uptake in three of four patients. In contrast, ⁶²Cu-ATSM uptake was not related to that of ¹⁸F-fluorodeoxyglucose. The negative correlation between blood flow and flow normalized ⁶²Cu-ATSM uptake suggests an enhancement of retention of ⁶²Cu-ATSM by low flow. ⁶²Cu-ATSM is a promising PET tracer for tumor imaging, which might bring new information for chemotherapeutic treatment as well as radiotherapy of hypoxic tumors.

Key words: ⁶²Cu-ATSM, hypoxia, lung cancer, ¹⁸F-FDG, PET