Annals of Nuclear Medicine Vol. 14, No. 2, 97–101, 2000

Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain —A positron emission tomography study—

Tsuyoshi Yoshida,* Yasuo Kuwabara,* Masayuki Sasaki,* Toshimitsu Fukumura,** Atsushi Ichimiya,*** Masashi Takita,*** Koji Ogomori,*** Yuichi Ichiya**** and Kouji Masuda*

Departments of *Clinical Radiology and ***Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University **The Japan Steel Works, Ltd. ****Department of Radiology, National Kyushu Cancer Center

We evaluated the sex-related differences in the decline of the cerebral muscarinic acetylcholinergic receptor (mACh-R) due to aging by using ¹¹C-*N*-methyl-4-piperidyl benzilate (¹¹C-NMPB) and positron emission tomography (PET). The subjects consisted of 37 (20 males and 17 females) healthy volunteers. The ¹¹C-NMPB uptake was evaluated by the ratio method (regional ¹¹C-NMPB uptake/Cerebellar ¹¹C-NMPB uptake; rNMPB ratio). The correlation between sex, aging, and the rNMPB ratio in normal aging was evaluated by a multiple regression analysis. The rNMPB ratio was higher in females than in males throughout the entire cerebral region (p < 0.01-p < 0.0001) and the rNMPB ratio might thus possibly decline with age more rapidly in females. Our study therefore revealed the existence of sex-related differences in the cerebral mACh-R.

Key words: cerebral muscarinic acetylcholinergic receptor, normal aging, sex-related differences, C-11-NMPB, positron emission tomography