Preliminary evaluation of [1-11C] octanoate as a PET tracer for studying cerebral ischemia: A PET study in rat and canine models of focal cerebral ischemia

Yuji Kuge,*,** Hidefumi Kawashima,* Tadatoshi Hashimoto,*** Mitsuaki Imanishi,*** Mie Shiomi,*** Kazuo Minematsu,**** Yasuhiro Hasegawa,**** Takenori Yamaguchi,**** Yoshihiro Miyake* and Naoto Hashimoto*

*Institute for Biofunctional Research Co., Ltd.

**Department of Tracer Kinetics, Hokkaido University School of Medicine

***Takeda Chemical Industries Co., Ltd.

****Cerebrovascular Division, Department of Medicine, National Cardiovascular Center

Octanoate is taken up into the brain and is converted in astrocytes to glutamine through the TCA cycle after β -oxidation. We speculate that $[1^{-11}C]$ octanoate may be used as a tracer for astroglial functions and/or fatty acid metabolism in the brain and may be useful for studying cerebral ischemia. In the present study we investigated brain distribution of $[1^{-11}C]$ octanoate and compared it with cerebral blood flow (CBF) by using rat and canine models of middle cerebral artery (MCA) occlusion and a high resolution PET. In rats brain distribution of $[^{15}O]H_2O$ measured 1-2 h and 5-6 h after insult was compared with that of $[1^{-11}C]$ octanoate measured 3-4 h after insult. Radioactivity ratios of lesioned to normal hemispheres determined with $[^{15}O]H_2O$ were lower than those determined with $[1^{-11}C]$ octanoate. These results were confirmed by a study on a canine model of MCA-occlusion. Twenty-four hours after insult, CBF decreased in the MCA-territory of the occluded hemisphere, whereas normal or higher accumulation of $[1^{-11}C]$ octanoate was observed in the ischemic regions. The uptake of $[1^{-11}C]$ octanoate-derived radioactivity therefore increased relative to CBF in the ischemic regions, indicating that $[1^{-11}C]$ octanoate provides functional information different from CBF. In conclusion, we found that $[1^{-11}C]$ octanoate is a potential radiopharmaceutical for studying the pathophysiology of cerebral ischemia.

Key words: [1-¹¹C]octanoate, positron emission tomography, cerebral ischemia, rat, dog