The effect of tumor size on F-18-labeled fluorodeoxyglucose and fluoroerythronitroimidazole uptake in a murine sarcoma model

June-Key Chung,**** Young Soo Chang,* Yong Jin Lee,**** Young Ju Kim,*
Jae Min Jeong,* Dong Soo Lee,* Ja June Jang**** and Myung Chul Lee*

Departments of *Nuclear Medicine, **Pathology, and ***Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea

The purpose of this study was to evaluate the effect of tumor size on the uptake of 18 F-fluorodeoxyglucose (FDG) and fluoroerythronitroimidazole (FETNIM) in a murine sarcoma model. ICR mice were xenografted with sarcoma 180 cell line and tumors were allowed to grow to a weight of 0.26–5.82 grams. 18 F-FDG and 18 F-FETNIM were injected intravenously in separate groups of mice, and after 1 hr, the tumors were excised and radiotracer uptake was measured. In another group of mice tumors were autoradiographically analyzed and subjected to H & E staining. In both the FDG and FETNIM group, per-gram radiotracer uptake by a tumor was inversely proportional to tumor weight. 18 F-FETNIM correlated more (r = -0.593, p < 0.05) than 18 F-FDG (r = -0.447, p < 0.05). Autoradiographic studies revealed that FDG accumulated in viable tumor areas, whereas FETNIM accumulated in both viable and partially necrotic areas. In the case of 18 F-FETNIM, a direct correlation between tumor weight and the no-uptake-area to total-tumor-area was demonstrated. We concluded that increased tumor size is associated with decreased uptake of 18 F-FDG and FETNIM, though this depends on the type of radiotracers and distribution of necrosis.

Key words: F-18-FDG, F-18-fluoroerythronitroimidazole, sarcoma, tumor size, autoradiography