Comparison of three PET dopamine D₂-like receptor ligands, [¹¹C]raclopride, [¹¹C]nemonapride and [¹¹C]*N*-methylspiperone, in rats

Kiichi Ishiwata,* Nobutaka Hayakawa,*** Nobuo Ogi,*** Keiichi Oda,* Hinako Toyama,* Kazutoyo Endo,** Akira Tanaka** and Michio Senda*

*Positron Medical Center, Tokyo Metropolitan Institute of Gerontology
**Showa College of Pharmaceutical Sciences

We studied the tracer kinetics of three dopamine D₂-like receptor ligands, [¹¹C]raclopride ([¹¹C]RAC), [¹¹C]nemonapride ([¹¹C]NEM) and [¹¹C]N-methylspiperone ([¹¹C]MSP), in anesthetized rats by tissue dissection, *ex vivo* ARG and PET in order to clarify their characteristics for PET imaging. The *in vivo* affinity of the three ligands for the striatum ([¹¹C]MSP > [¹¹C]NEM > [¹¹C]RAC) obeyed the *in vitro* affinity for dopamine D₂ receptors. The affinity of [¹¹C]RAC and [¹¹C]MSP for the cerebellum was very low, but the affinity of [¹¹C]NEM for the cerebellum was compatible to that for the cortex and was not to be ignored. Also the affinity of [¹¹C]MSP for the cortex was relatively high. [¹¹C]RAC showed the highest selectivity. The striatal PET image with [¹¹C]RAC was clearer than that with [¹¹C]NEM or [¹¹C]MSP, but the activity decreased much faster than that measured by tissue dissection because of the partial volume effect. The striatal activity with [¹¹C]NEM remained high and that with [¹¹C]MSP gradually increased. [¹¹C]RAC and [¹¹C]MSP, but not [¹¹C]NEM, showed a high accumulation in the periorbital region.

Key words: raclopride, nemonapride, N-methylspiperone, dopamine D₂-like receptor, rat, PET