Technetium-99m-sestamibi scintimammography of benign and malignant phyllodes tumors

Hitoya Ohta,* Tomoo Komibuchi,* Toshihiro Nishio,** Toshiyuki Kitai,** Shunji Yamamoto,** Minoru Ukikusa,** Hiroji Awane,** Kunikatsu Irie*** and Masayuki Shintaku***

Departments of *Laboratories, **Surgery and ${ }^{* * * \text { Pathology, Osaka Red Cross Hospital }}$

Abstract

We presented two cases of phyllodes tumor of the breast examined by ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-sestamibi (MIBI) twophase scintimammography. In the case with malignant phyllodes tumor, ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was recognized on both early and delayed images. In the case with benign phyllodes tumor, however, ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was recognized on only the early image. ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI delayed imaging may have the potential to distinguish between benign and malignant phyllodes tumors.

Key words: technetium-99m-sestamibi, scintimammography, phyllodes tumor

INTRODUCTION

Phyllodes tumor accounts for less than 1% of breast tumors and have been divided into benign, borderline and malignant groups. ${ }^{1,2}$ It is not easy to distinguish between benign and malignant phyllodes tumors by mammography and sonography, since there is substantial overlap in the imaging characteristic. ${ }^{3}$ Recently high diagnostic accuracy of ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-sestamibi (MIBI) scintimammography in detecting breast cancer has been reported. ${ }^{4.5}$ We report

- two cases of phyllodes tumor examined by ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI scintimammography and discuss the potential to distinguish between benign and malignant phyllodes tumors.

CASE REPORT

Scintimammography was performed at 15 minutes (early image) and at 3 hours (delayed image) after intravenous injection of 600 MBq of ${ }^{99 \mathrm{~m}} \mathrm{Tc}-$ MIBI. The anterior planar view including both breasts and axillary regions in the supine position was obtained with a Toshiba GCA 7200A gamma camera equipped with a low-energy, high resolution parallel hole collimator.

Case I A 51-year-old female was admitted because of

[^0]a rapidly enlarging breast tumor. She had noticed a firm lump in the right breast three years before her admission. Scintimammography was performed and ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was recognized on both early and delayed images (Fig. 1A, B). Simple mastectomy was performed. The tumor measured $20 \mathrm{~cm} \times 17 \mathrm{~cm} \times 13 \mathrm{~cm}$ and histopathology revealed malignant phyllodes tumor (Fig. 2 A, B).

Case 2 A 29-year-old female was admitted because of an enlarging left breast tumor. She had noticed the tumor nine months before. Scintimammography was performed and ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was recognized on an early image (Fig. 3A), but was not recognized on a delayed image (Fig. 3B).

The tumor was excised widely. The tumor measured $8 \mathrm{~cm} \times 6.5 \mathrm{~cm} \times 5 \mathrm{~cm}$ and histopathology revealed benign phyllodes tumor (Fig. $4 \mathrm{~A}, \mathrm{~B}$).

DISCUSSION

Because of diverse criteria of histopathologic analysis, the percentage of malignant subgroup varies from 23% to 50% of all phyllodes tumors. ${ }^{3}$ Preoperative diagnosis is difficult, ${ }^{6}$ since with mammography and sonography there is substantial overlap in the imaging characteristics of benign and malignant phyllodes tumors. ${ }^{3}$

Recently developed ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI scintimammography offers new hope in breast imaging. ${ }^{4.5}$ To our knowledge, there is no literature on ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI scintimammography of phyllodes tumor. Our case showed that ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI

Fig. 1 (Case 1) ${ }^{99 m} \mathrm{Tc}$-MIBI accumulation in the lesion was recognized on both early and delayed images (A: early, B: delayed).

- Fig. 2 (Case 1) Surgery revealed malignant phyllodes tumor (A: Gross appearance of the tumor, B: H \& E stain).

Fig. 3 (Case 2) ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was recognized on early image (A), but ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was cleared on delayed image (B).

Fig. 4 (Case 2) Surgery revealed benign phyllodes tumor (A: Gross appearance of the tumor, B: H \& E stain).
delayed imaging may have the potential to distinguish between benign and malignant phyllodes tumors. Concerning the uptake mechanism, it has been reported that ${ }^{99 m} \mathrm{Tc}$-MIBI accumulates within mitochondria on the basis of electrical potentials generated across the membranes. And since malignant tumors maintain a more negative transmembrane potential, ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation increases, ${ }^{7-9}$ but ${ }^{99 m} \mathrm{Tc}$-MIBI accumulation also relates with tumor vascularity or high cellularity. ${ }^{10,11}$ We considered that the ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation on the early image in case 2 was due to a reflection of blood flow or the high cellularity of the tumor. It has recently been found that the presence of multidrug resistance-mediated P glycoprotein excludes ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation. ${ }^{8,9}$ Unfortunately we could not examine the expression of P glycoprotein in case 2.

In conclusion, ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI scintimammography was performed in two cases of phyllodes tumor. In the malignant case, ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI accumulation was recognized on both early and delayed images. In the benign case, ${ }^{99 m} \mathrm{Tc}$ MIBI accumulation was recognized only on the early image. Further experience is necessary to confirm the possibility to distinguish between benign and malignant phyllodes tumor with ${ }^{99 \mathrm{~m}} \mathrm{Tc}$-MIBI scintimammography.

ACKNOWLEDGMENTS

The authors thank Mr. Masumi Inoue, Mr. Koji Yoshii and Mr. Kazunori Ayabe for their valuable assistance.

REFERENCES

1. Rosen PP, Oberman HA. Cystosarcoma phyllodes. In Atlas of Tumor Pathology: Tumors of the Mammary Gland, Rosai J, Sobin LH (eds.), Washington DC, Armed Forces Institute of Pathology, pp. 107-114, 1993.
2. Pietruszka M, Barnes L. Cystosarcoma phyllodes: a clinicopathologic analysis of 42 cases. Cancer 41: 1974

1983, 1978.
3. Liberman L, Bonaccio E, Hamele-Bena D, Abramson AF, Cohen MA, Dershaw DD. Benign and malignant phyllodes tumors: mammographic and sonographic findings. Radiology 198: 121-124, 1996.
4. Taillefer R, Robidoux A, Lambert R, Turpin S, Laperriére J. Technetium- 99 m -sestamibi prone scintimammography to detect primary breast cancer and axillary lymph node involvement. J Nucl Med 36: 1758-1765, 1995.
5. Khalkhali I, Cutrone J, Mena I, Diggles L, Venegas R, Vargas H, et al. Technetium-99m-sestamibi scintimammography of breast lesions: clinical and pathological fol-low-up. J Nucl Med 36: 1784-1789, 1995.
6. Umpleby HC, Moore I, Royle GT, Guyer PB, Taylor I. An evaluation of the preoperative diagnosis and management of cystosarcoma phyllodes. Ann R Coll Surg Engl 71: 285288, 1989.
7. Chiu ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (I) in cultured mouse fibroblasts. J Nucl Med 31: 16461653, 1990.
8. Moretti JL, Caglar M, Boaziz C, Calliat-Vigneron N, Morere JF. Sequential functional imaging with technetium- 99 m hexakis-2-methoxyisobutylisonitrile and indium-111 octreotide: can we predict the response to chemotherapy in small cell lung cancer? Eur J Nucl Med 22: 177-180, 1995.
9. Maffioli L, Steens J, Pauwels E, Bombardieri E. Application of ${ }^{99 m} \mathrm{Tc}$-sestamibi in oncology. Tumori 82: 12-21, 1996.
10. Rao VV, Chiu ML, Kronauge JF, Piwnica-Worms D. Expression of recombinant human multidrug resistant P-glycoprotein in insect cells confers decreased accumulation of technetium-99m-sestamibi. J Nucl Med 35: 510-515, 1994.
11. Komori T, Matsui R, Adachi I, Shimizu T, Sueyoshi K, Narabayashi I. In vitro uptake and release of ${ }^{201} \mathrm{Tl}$ and ${ }^{99 n} \mathrm{Tc}$ MIBI in HeLa cell. KAKU IGAKU (Jpn J Nucl Med) 32: 651-658, 1995.
12. Lu G, Shin WJ, Huang HY, Long MQ, Sun Q, Liu YH, et al. ${ }^{99 \mathrm{~mm}} \mathrm{Tc}-\mathrm{MIBI}$ mammoscintigraphy of breast masses: early and delayed imaging. Nucl Med Commun 16: 150-156, 1995.

[^0]: Received September 9, 1996, revision accepted November 13, 1996.
 For reprint contact: Hitoya Ohta, M.D., Department of Laboratories, Osaka Red Cross Hospital, 5-53 Fudegasaki-cho, Tennohji-ku, Osaka 543, JAPAN.

