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A new decision rule for parameter 6 in MAP EM (OSL) reconstruction

with the Gibbs prior

Koichi Ocawa and Keiichi HIRuma

Department of Electronic Informatics, College of Engineering, Hosei University

In MAP EM (OSL) reconstruction with the Gibbs prior, the parameter § which appears in the prior
is commonly treated as a fixed value. Because the quality of reconstructed images depends on this
parameter, we have to select d very carefully, and because the statistics of an image vary locally, we
should not choose a single 6 value for each image. We propose a new decision rule to select an
appropriate local 8. In our proposed method, 8 is determined as the median of the differences
between a value of the pixel of interest and those of neighboring pixels. This selection yields an
appropriate prior depending on the regional statistics. The prior therefore preserves the edge
property without amplifying statistical noise and it is not necessary to know the appropriate & value
to obtain high quality images. We performed computer simulations to determine the effectiveness
of the proposed method. The results showed that the quality of reconstructed images obtained with

the proposed method was superior to those obtained with the prior with a fixed é.
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INTRODUCTION

MaxiMuM a posteriori (MAP) estimation by means of an
expectation maximization (EM) algorithm! is a kind of
Bayesian approach with a likelihood function and a priori
information. Several prior distributions have been pro-
posed in the literature as a priori information.>® The
Gibbs prior®!® is commonly used to penalize the differ-
ence between neighboring pixel values in a fixed-size
neighborhood. Several methods have been proposed to
perform the MAP EM reconstruction with the Gibbs
prior. These include a method based on a generalized EM
(GEM) algorithm* and a method based on a one-step-late
(OSL) algorithm.>® The MAP EM (OSL) reconstruction
with an appropriate prior produces higher quality images
than the maximum likelihood (ML) estimation with an
EM algorithm.'"'? In the MAP EM (OSL) reconstruction
with the Gibbs prior, the parameter § in the prior is com-
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monly treated as a fixed value.” Because the quality of
reconstructed images depends on this parameter, we must
empirically select an appropriate value for parameter 6,
but the statistics of an image vary locally, so it is difficult
to choose an appropriate 6 value.

This paper presents a new rule for deciding the param-
eter 6 locally in the MAP EM (OSL) reconstruction with
the Gibbs prior. In the proposed method, the § value is
decided adaptively pixel-by-pixel with a median filter.
The prior therefore not only preserves the edge property,
but also suppresses the statistical noise.

We performed computer simulations to confirm the
validity of the proposed method. In these simulations, we
compared the conventional method by using the prior
with a fixed 8 and the proposed method. The simulation
results showed that the quality of the reconstructed im-
ages obtained with the proposed method was superior to
those obtained with the conventional method.

MAP EM (OSL) RECONSTRUCTION
To reconstruct an image by using MAP estimation, we

select an optimum image by maximizing a conditional
probability of an image A assuming projection data Y. The
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posterior probability AAY) is formulated by using Bayes’
rule:

oy < JYM S i
fY)
where f(YIL) represents a likelihood function and f(A)
represents a priori information. Since maximizing fAAY)
is equivalent to maximizing In f(AlY) and f(Y) is a con-
stant for given projection data, the MAP reconstruction
requires solution of the problem

max In ANY) = max{In AYIX) +In f(R)}. (2)

In order to solve Eq. (2), we use the one-step-late (OSL)
algorithm® which is an approximation to the MAP estima-
tor.

A. Likelihood function

The likelihood function f{YIA) reflects the statistical na-
ture of the projection data Y. Since photon emission is
expressed as a Poisson process, the projection data, which
are a summation of the photon along a line, have a Poisson
distribution. Therefore, f(YIA) is given by
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where A; is the pixel value of a pixel j, Y is the detected
number of photons for a bin i, and ¢; represents the
contribution of a pixel j to a bin i.

B.  Gibbs prior

As the prior f(A), we assume the Gibbs prior which reflects
the local statistics of an image. The Gibbs prior is defined
as

1 1
709 =— exp 5U0) 4
where Z is a normalization factor which need not be
calculated, B is a Gibbs distribution coefficient, and U(-)
is the energy function. The energy function is the weighted
summation of the potential function V(-), which is a func-
tion of the difference r between the values of two pixels j
and /. The energy function has the following form:

U\ =l§/_w,,V(r;5). (5)

In this equation, N, is a neighborhood of a pixel j, w; is a
weighting factor of the clique consisting of two pixels j
and /, and Jis a scaling factor of the potential function. In
our study, we used the following potential function which
has been proposed by Geman and McClure:?

V(r;a) = —(r/®2 . (©)
1+ (r/ 6y

This function has the ability to retain the edge sharpness
and reduce the statistical noise at the same time.
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Fig. 2 Derivative potential function.

METHODS

In order to reconstruct high-quality images with the MAP
EM (OSL) reconstruction, we have to select an appropri-
ate prior area-by-area. In the MAP EM (OSL) reconstruc-
tion with the Gibbs prior, the prior has two adjustable
parameters, Band 6. The Gibbs distribution coefficient 3
controls the contribution of all pixels neighboring an
interesting pixel. The scaling factor d controls the contri-
bution of a pixel neighboring the interesting pixel. In our
study, we concentrated on & because this parameter is an
important factor which affects local statistics of a recon-
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| _the pixel of interest

(a) Conventional

(b) Proposed

Fig.5 Reconstructed images (Simulation 1). (a) reconstructed images of the conventional method, (b)

reconstructed images of the proposed method.

structed image more than . The parameter dis commonly
treated as a fixed value in the MAP EM (OSL) reconstruc-
tion. To reconstruct high-quality images, we must empiri-
cally select an appropriate & value. If we fix the parameter
8, we cannot realize the local statistics of an image
appropriately, and, as a result, we can not preserve edges
and reduce noise in the reconstructed image.

We proposed a new decision rule for selecting the
appropriate 6 locally and improving the quality of the
reconstructed image. In the proposed method, we used the
6 value as the median of differences of two pixel values
between the pixel of interest and neighboring pixels.
Figure 1 shows examples of selecting & in the different
local statistics. The derivative potential function dV/dr is
shown in Figure 2. In this figure, the vertical axis is the
value for the derivative potential function and the hori-
zontal axis is the difference between two pixel values (the
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pixel of interest and the neighboring pixels). If the pixel
values are almost the same as shown in Figure 1(a), then
6 becomes small and the derivative potential function
becomes the solid line in Figure 2. As a result, the flat area
in the reconstructed image becomes smooth because the
prior suppresses the small differences (Fig. 2, solid line
r < 3). If the pixel values are distributed in Figure 1(b) like
an edge area, then dalso becomes small. Because the prior
retains the large differences (Fig. 2, solid line r > 10), the
edge sharpness is preserved, but if the pixel values are
distributed as shown in Figure 1(c), then & becomes large
and the derivative potential function becomes the dashed
line in Figure 2. As a result, we can suppress the statistical
noise because the prior penalizes the large differences. In
this way, we can improve the quality of the reconstructed
images by using the proposed method, and it is not
necessary to determine an appropriate 6 to obtain a high-
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Fig. 6 Original images and Reconstructed images (Simulation 2). (a) original images, (b) recon-
structed images of the conventional method, (c) reconstructed images of the proposed method.

quality image because & is selected automatically.
SIMULATIONS

We performed three types of the computer simulations to
determine the effectiveness of the proposed method. In
these simulations, we compared the conventional method
by using the prior with the fixed 6 and the proposed
method.

The common simulation conditions were as follows.
There were 45 views (0 to 180 degrees), the initial image
was formed with the mean value for the projection data,
and 30 iterations were used in image reconstruction. The
second order neighborhood and the weighting factor for
the clique shown in Figure 3 were used in the simulations.
The potential function expressed in Eq. (6) was used, and
the maximum value for dV/dr was normalized to unity. In
the conventional method, we used six 0 values (6=1, 10,
30, 50, 70 and 100).

A.  Simulation 1

The computer simulations were done by using a numeri-
cal phantom which included a flat area, an edge area and
a noise area. The original 32 X 32 matrix image is shown
in Figure 4. The phantom does not represent the actual
activity distribution as a result of a Poisson process. Here
we set typical three patterns in the phantom to basically
confirm the performance of the proposed method. We
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examined three 3 values (200, 500 and 1000).

The images reconstructed after 30 iterations are shown
in Figure 5. Figure 5(a) presents the images reconstructed
by the conventional method. The & values are, from left to
right, 1, 30 and 100. The results of the proposed method
are shown in Figure 5(c).

The results show that the proposed method can recon-
struct good images for these three areas.

B. Simulation 2

Three phantoms having different shapes were used for the
simulations. The matrix sizes of the circular phantom and
the Shepp phantom were 64 X 64, and that of the brain
phantom was 128 x 128. The J value was decided empiri-
cally from a number of simulations. It was held constant
at 500 in the circular phantom, 2000 in the Shepp phan-
tom, and 2000 in the brain phantom. The brain phantom
was made from an MR image. The image was quantized
into four gray levels and we set arbitral values to those
areas.

One percent Gaussian noise of was introduced into the
projection data. The reason why we used only a tiny
amount of noise was to evaluate the quality of the image
easily. The original image and the images reconstructed
after 30 iterations are shown in Figure 6. The original
images are shown in Figure 6(a). The images recon-
structed by the conventional method are shown in Figure
6(b). The three cases, from left to right, are for d equal to

Annals of Nuclear Medicine

T ———.




Pixel value (140, 150, 160)

(a) Original

0=30

(b) Conventional

6 =100

(c) Proposed

Fig. 7 Original images and Reconstructed images (Simulation 3). (a) original images, (b) recon-
structed images of the conventional method, (c) reconstructed images of the proposed method.

1, 30 and 100. The results obtained with the proposed
method are shown in Figure 6(c).

The proposed method yields good results independent
of the phantom shapes.

C. Simulation 3

The computer simulations were done with three phantoms
which had different contrast but the same shape. The
matrix size was 128 x 128 and the 8 value was fixed at
2000 in all cases. One percent Gaussian noise was intro-
duced into the projection data.

The original image and the images reconstructed after
30 iterations are shown in Figure 7. Figure 7(a), (b) and (c)
show the original image, the results of the conventional
method, and those obtained with the proposed method. In
Figure 7(b) the images reconstructed with 6 =1, 30 and
100 are shown at the left, middle and right.

The proposed method produces better results than the
conventional method in all cases.

DISCUSSION

For the images with a small & (left in Fig. 5(a)), the edge
property can be preserved in the conventional method, but
the noise is not removed. This is due to the limited
smoothing of only small differences. When the 6 value
becomes large (the middle images in Fig. 5(a)), the noise
disappears, and the edge is preserved. When Jis increased
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further (the right images in Fig. 5(a)), the edge sharpness
cannot be maintained, because the prior suppresses the
large differences. When f is large, because the recon-
structed image is not affected by the prior, the flat area
becomes noisy. It is therefore difficult to preserve the edge
and reduce the noise at the same time with the conven-
tional method. To sharpen up the edge without noise
fluctuation in the conventional method, we have to select
an appropriate 9 value. In this simulation, the appropriate
0 value is 30. In contrast, we can preserve the edge
property and reduce the noise without respect to the 3
value by using the proposed method (Fig. 5(b)) because
is selected pixel-by-pixel according to the regional statis-
tics of an image.

In the proposed method, the prior at each iteration
depends on the estimate of the image at that iteration, but
the algorithm itself changes if the sequence of estimates
changes. Consequently the uniqueness of the estimate is
not preserved exactly, but simulation results show the
effectiveness of the proposed method under some condi-
tions. For the neighboring system, we used the second-
order neighborhood. In the simulation we examined the
first-order, the second-order, and the third-order neigh-
borhood, and the ratio of the processing time for the
selection of d value was nearly 5 : 9 : 25. The quality of the
reconstructed image, however, did not change consider-
ably when we selected a larger order neighborhood than
the second-order neighborhood. We therefore selected
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the second order neighborhood for the neighboring sys-
tem. As for the processing time for the reconstruction, the
time required was 2186 sec by the proposed method with
the adaptive & (Sun SPARCstation 10). The image size
was 128 x 128, and the number of projections was 45 (30
iterations). On the other hand, the processing time for the
method with the fixed § was 1812 sec with the same
conditions as in the case of the adaptive 8. For the noise
treated in the simulation, we used 1% Gaussian noise for
the projection data. We have examined several cases (1%,
3% and more), but in the reconstructed image, it was not
easy to evaluate the quality visibly without any additional
image processing for the projection data except in the case
of 1% noise, so we showed only the results for 1%
Gaussian noise. In the clinical study, we must do some
processing such as smoothing to the measured planar
image before application of the proposed method. As to
the convergence of the algorithm, the method may not
obtaine convergence at the optimum solution. This is
caused by a nonlinear process in selecting the prior, but
the results shown in Figure 8 imply the stability of the
algorithm under the conditions used in the paper.

As shown in Figure 6(b), a small § amplified noise and
a large 6 reduced the edge sharpness of reconstructed
images. We must therefore select an appropriate & care-
fully for each phantom in the conventional method be-
cause the reconstructed image is sensitive to the & value.
Nevertheless, the proposed method yields high-quality
images without information on the appropriate & value for
any shape of phantom or for any distribution.

Figure 7 shows that the proposed method produces
better results than the conventional method, as in simula-
tions 1 and 2. To illustrate this further, we calculated the
mean square error between the original image and the
reconstructed images. Figure 8 shows the mean square
error for each phantom in Figure 7. The pixel values are
140, 150 and 160 in (a); 100, 150 and 200 in (b); and 50,
150 and 200 in (c). The vertical axis in Figure 8 represents
the mean square error, and the horizontal axis, the number
of iterations. As shown in Figures 8(a) and (b), both the
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mean square error of the conventional method and the
proposed method are stable for the iterations. The mean
square error of the images when using the proposed
method is smaller than that when using the conventional
method. In Figure 8(c), the mean square error of the
conventional method begins to increase after a certain
number of iterations. The instability in the mean square
error is caused by the amplification noise. In order to
obtain good results with the conventional method, we
need to know the appropriate number of iterations. In
contrast, because the mean square error of the proposed
method is stable, the proposed method yields high-quality
images without requiring knowledge of the appropriate
number of iterations.

CONCLUSIONS

In this paper, we proposed a new rule for deciding the
parameter & in MAP EM (OSL) reconstruction. The new
rule uses the Gibbs prior to avoid selecting d empirically
and improve the quality of reconstructed images. In the
simulations, the proposed method produced better results
than the conventional method with the prior with the
fixed & because it selects & pixel-by-pixel depending on
the local statistics of an image. Moreover, it is not neces-
sary to decide an appropriate 0 value to reconstruct high-
quality images. Further work will be needed to estimate
the appropriate value for the Gibbs distribution coeffi-
cient 3.
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