Japanese
Title201Tl運動負荷心筋SPECT診断支援エキスパートシステムの開発と応用
Subtitle原著
Authors堀野誠人*, 細羽実*, 和迩秀信*, 織内昇**, 舘野円**, 井上登美夫**, 佐々木康人**, 五十嵐均***, 飯塚利夫****
Authors(kana)
Organization*(株)島津製作所医用機器研究所, **群馬大学医学部核医学教室, ***附属病院核医学診療部門, ****第二内科
Journal核医学
Volume27
Number2
Page93-106
Year/Month1990/2
Article原著
Publisher日本核医学会
Abstract「要旨」 201Tl心筋SPECTにおいて, 画像診断支援を行うエキスパートシステムを開発した. 心筋SPECT像に対し二次元 (2D) 極座標処理を行った後, 心筋正常群より求めた正常下限との比較において, 負荷時, 遅延時両画像の欠損画素を判定した. 左室心筋を6部位 (前壁, 中隔, 側壁, 後壁, 下壁, 心尖) に分割し, 各部位に対して負荷時欠損, 遅延時再分布の診断を行い, 核医学レポートとして出力する. これらの判定および所見, 解釈への知的判断には, 従来のプログラムに, ルール記述により構成されるエキスパートシステムを加え, これにより虚血性疾患の診断を行った. 臨床における医師判定との比較評価の結果, 部位別判定では, 負荷時欠損の有無の一致率91%, 再分布の一致率64%であった. また, 疾患別判定では, 狭心症11例中9例, 陳旧性心筋梗塞20例中19例で一致し, 診断支援システムとして有用であると考えられた.
Practice臨床医学:一般
KeywordsMyocardial SPECT, Artificial intelligence (AI) ,Expert system (ES) , Computer aided reporting system
English
TitleDevelopment and Clinical Application of an Expert System for Supporting Diagnosis of 201Tl Stress Myocardial SPECT
SubtitleOriginal Articles
AuthorsMasato HORINO*, Minoru HOSOBA*, Hidenobu WANI*, Noboru ORIUCHI**, Madoka TATENO**, Tomio INOUE**, Yasuhito SASAKI**, Hitoshi IGARASHI***, Toshio IIZUKA****
Authors(kana)
Organization*Medical Technology Research Laboratory, Shimadzu Corporation, **Department of Nuclear Medicine, ***Clinical Nuclear Medicine Division, ****The second Department of Internal Medicine, Gunma University School of Medicine
JournalThe Japanese Journal of nuclear medicine
Volume27
Number2
Page93-106
Year/Month1990/2
ArticleOriginal article
PublisherTHE JAPANESE SOCIETY OF NUCLEAR MEDICINE
Abstract[Summary] A consultation expert system which supports our computer aided reporting system was developed. The system was used for the evaluation of the two dimensional polar (bull's eye) display of 201Tl myocardial SPECT. The system consists of patients management (PM)) and consultation expert systems (ES) . The former is connected to image processors coupled with scinticameras. The bull's eye display of myocardial SPECT is transfered from image processor to the data base of PM. When inference request is made, the feature extraction program extracts information on localization, extent and severity of focal defects comparing count-rates pixel by pixel with the reference obtained from seven normal controls. The inference engine is activated to determine presence of focal defects utilizing diagnostic rules in the knowledge base. The results are sent back to PM and reported with the probability of assurance. Fifty eight patients with old myocardial infarction (OMI) , angina pectoris (AP) and other diseases as well as normal controls were included in the study. The decision for presence or absence of focal defects by ES agreed with that by nuclear physicians (NP) in 301 segments among 330 (91%) in stress images. The presence of redistribution in delayed images agreed in 43 segments among 67 (64%) . Image interpretation by ES agreed well with that of NP in patients with OMI (19/20) and AP (9/11) . Seven were interpreted as normal by both ES and NP. The system is useful, as it provides NP with complementary and supportive information applicable to decision making and reporting. Further clinical experiences can improve knowledge base for better ES function.
PracticeClinical medicine
KeywordsMyocardial SPECT, Artificial intelligence (AI) ,Expert system (ES) , Computer aided reporting system

【全文PDF】