Japanese
Title僧帽弁狭窄症における肺内血流分布と運動時肺血行動態との関係
Subtitle原著
Authors田中健*, 川越康博**, 川名正敏**, 高橋早苗**, 木全心一**, 近藤瑞香**, 広沢弘七郎**, 牧正子***, 日下部きよ子***
Authors(kana)
Organization*東京女子医科大学日本心臓血圧研究所(現;心臓血管研究所), **東京女子医科大学日本心臓血圧研究所, ***放射線科核医学部
Journal核医学
Volume24
Number11
Page1625-1632
Year/Month1987/11
Article原著
Publisher日本核医学会
Abstract「要旨」心機能がNYHA 2°に属する純型僧帽弁狭窄症71症例において肺内血流分布と運動時肺血行動態との関係を検討した. 肺内血流分布評価は坐位静注によるTc-99m-MAA肺血流像を計算機処理し等カウント域表示としたデジタル肺血流像 (digital perfusion images:DPI) によった. DPIは100-70%等カウント域 (高肺血流域) の右肺正面像におけるパターンによってG-0からG-5までの6段階に分類した. G-0 (高肺血流域が下肺野に限局) , G-1 (上肺野にも出現) , G-2 (一様に認められる) , G-3 (肺底部で消失) , G-4 (上肺野に限局) , G-5 (下肺野肺血流の減少) . 安静時肺血行動態は各群間で差が少なく, 平均肺動脈圧 (mPA) は24.8±11.0 mmHg, 心係数 (CI) は2.7±0.8 l/mM2であった. 運動時肺血行動態は4組に分類し得た. 心係数はG-0, G-1で十分な増加が認められたが, 肺動脈圧はG-1でより上昇を認めた. G-4, 5では, 著明に肺動脈圧が上昇したにもかかわらず, 心係数の増加は少なく, 4.0 l/mML2以上となる例は4例 (4/14) のみであった. G-2, 3はこの中間に位置していた. G-0は正常分布例で十分な未灌流肺血管床を上肺野に有する, G-1では未灌流肺血管床が減少している, G-2, 3では未灌流肺血管床が消失している. またG-4, 5では下肺野の肺血管床が減少していると考えられた. 肺血管床の程度により, 運動時肺血行動態が規定されていると考えられた. 安静時DPIによって安静時のみならず運動時肺血行動態が推定された. このことは安静時肺内血流分布により運動時肺血行動態が規定されるという興味ある結果であった.
Practice臨床医学:一般
KeywordsDistribution of pulmonary perfusion, Pulmonary hypertension, Exercise test, Mitral stenosis.
English
TitleRelationship between Hemodynamic Response to Exercise and Distribution of Pulmonary Perfusion in Mitral Stenosis
SubtitleOriginal Articles
AuthorsTakeshi TANAKA*, Yasuhiro KAWAGOE**, Masatoshi KAWANA**, Sanae TAKAHASHI**, Shinichi KIMATA**, Mizuka KONDO**, Koshichiro HIROSAWA**, Masako MAKI***, Kiyoko KUSAKABE***
Authors(kana)
Organization*Heart Institute of Japan, Tokyo Women's Medical College(Cardiovascular Institute), **Heart Institute of Japan, Tokyo Women's Medical College, ***Department of Radiology, Tokyo Women's Medical College
JournalThe Japanese Journal of nuclear medicine
Volume24
Number11
Page1625-1632
Year/Month1987/11
ArticleOriginal article
PublisherTHE JAPANESE SOCIETY OF NUCLEAR MEDICINE
Abstract[Summary] Relationship between hemodynamic response to exercise and distribution of pulmonary perfusion was studied in 71 patients with mitral stenosis. Distribution was estimated by using computerized Tc-99m-MAA perfusion images (digital perfusion images; DPI) . DPI were composed of isocount areas. Various types of DPI were obtained and were classified to 6 grades (G) according to patterns of 100-70% isocount area in right anterior DPI, i.e. G-0 (normal) , G-1 (increase of perfusion at upper zone) , G-2 (uniform distribution) , G-3 (disappearance of basal hyperperfusion area) , G-4 (apical hyperperfusion area) and G-5 (decrease of perfusion at lower zone) . Patients were devided to 4 groups according to grade. At rest there were no marked hemodynamic differences between groups (n=71, mean pulmonary artery pressure (mPA) ; 24.8+-11.0 mmHg, cardiac index (CI) ; 2.7+-0.81 l/mM2) , however hemodynamic parameter during exercise showed marked differences, i.e. G-0 (n=13, mPA; 40.5+-6.0, CI; 5.4+-0.9) , G-1 (n=17, mPA; 51.8+-9.2, CI; 5.2+-1.1) , G-2,3 (n=27, mPA: 52.0+-11.5, CI; 4.5+-0.7) and G-4,5 (n=14, mPA; 64.9+-17.5, CI; 3.6+-0.7) . By using DPI response to exercise was predictable. Apical hypoperfused area (G-0,1) might play important role as reservoir for increase of CI accompanying increase of mPA. Restriction of pulmonary perfusion to apical area (G-4,5) might mean that there were no sufficient space for increase of CI inspite of marked increase of mPA. Distribution of pulmonary perfusion determined hemodynamic response to exercise in patients with mitral stenosis. Noninvasive DPI might be useful for estimating patients with mitral stenosis.
PracticeClinical medicine
KeywordsDistribution of pulmonary perfusion, Pulmonary hypertension, Exercise test, Mitral stenosis.

【全文PDF】