Presented by Medical*Online

REGIONAL INTERRELATIONSHIPS BETWEEN CEREBRAL OXYGEN CONSUMPTION AND GLUCOSE UTILIZATION IN DEMENTIA: A POSITRON EMISSION TOMOGRAPHY STUDY.

Five patients with Alzheimer's disease (AD) (mean age = 60), four patients with multi-infarct dementia (MID) (mean age = 72) and seven non-demented control persons (mean age = 67) were studied to obtain values of regional cerebral blood volume (CBV, C-14 carbon monoxide inhalation), cerebral blood flow (CBF), oxygen extraction fraction (OEF) and oxygen extraction consumption (CMRO2) (0-15 steady-state inhalation), and glucose utilization (CMRGlc) (F-18 fluoro-deoxy-glucose method). Value of lumped constant for normal persons was tentatively used for calculation of CMRGlc.

Three tomographic planes at Om + 3.5 and 7 cm were obtained. Sixteen regions of interest were set in the cortical areas on the functional images of CBF, OEF, CMRO2, CMRGlc and CBV. Mean cortical values of these parameters were obtained in each patient.

In AD patients, CBF and CMRO2 decreased variably depending on the duration of the disease. OEF significantly increased indicating lack of oxygen supply to brain. Ratio of CMRGlc to CMRO2 decreased significantly.

In MID patients, decrease of CMRO2 and CMRGlc firmly coupled. OEF increased slightly but not significant compared with controls.

Mean hemispheric values of CBV was significantly lower in AD patients than in controls.

CLINICAL EXPERIENCES OF POSITRON EMISSION COMPUTED TOMOGRAPHY IN THE NEUROSURGICAL FIELD

Division of Neurosurgery, Institute of Brain Diseases, *Department of Radiology and Nuclear Medicine, Institute for Tuberculosis and Cancer, **Cyclotron Radiisotope Center, Tohoku University, Sendai.

Since April 1983, the positron emission computed tomography (ECAT-II) has been applied to clinical use in Tohoku University. F-18-FDG, C-14-CO, C-14-methionine, O-15-O2 and O-15-CO2 were used as tracers for investigating brain tumors and cerebrovascular disorders.

The results obtained through the study is reported from the view points as follows: 1) in the brain tumor, correlation between the histological malignancy and the metabolic characteristics, and the changes of physiological parameters before and after the treatment (radioimmunochemotherapy), 2) in Moyamoya disease, the investigation into the nature of "re-build up" phenomenon on EEG, and the evaluation of surgical treatment for this disease and 3) in arterio-venous malformation, metabolic and perfusion changes in and around the malformations.

EXPERIMENTAL BRAIN TUMOR AND F-18-FdUrd - BASIC INVESTIGATION AS A NUCLEIC ACID METABOLISM TRACER.

Division of Neurosurgery, Institute of Brain Diseases, **Cyclotron Radiisotope Center, Tohoku University, Sendai.

The potential usefulness of F-18-fluoro-deoxyuridine (FdUrd) as a nucleic acid metabolism tracer had already been reported in the previous meeting. This time, the characteristics of FdUrd was investigated more in detail by using multiple labeled autoradiographic (ARG) technique recently we had reported.

C-14-thymidine ARG revealed the accumulation of C-14 only in the periphery of the experimental brain tumor in rats, but hardly in the part of central necrosis. C-14-aminoisobutyric acid ARG which has been used for demonstrating BBB breakdown showed, however, that the distribution of C-14 was homogeneous in the brain tumor. On the other hand, FdUrd ARG image disclosed high accumulation of F-18 in the periphery of the brain tumor, but also in the central necrosis some uptake was recognized. Tissue sampling analysis revealed that F-18 radioactivity in the acid insoluble and acid soluble nucleotides fraction in the brain tumor increased with time.

These results suggest that FdUrd will be a useful nucleic acid metabolism tracer in the clinical application of positron emission computed tomography.

BABY CYCLOTRON BC3015.

We, The Japan Steel Works, have delivered BABY CYCLOTRONs, types BC105, BC107, BC168 and BC1710, which produce the short lived radionuclides (C-11, N-13, 19F and 18F) for nuclear medicine, to domestic and foreign customers. In 1983, we got the order of new machine BC3015 from University of Pennsylvania in Philadelphia (U.S.A.). BC3015 has many features, such as step-wise variable energy, acceleration of four particles, self-shielding function for radiation leakage, etc. The main specifications of BC3015 are shown below.

1. Performance Ratings (BC3015)

<table>
<thead>
<tr>
<th>Particle</th>
<th>Energy (MeV)</th>
<th>Current (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>30, 22, 13</td>
<td>60</td>
</tr>
<tr>
<td>Deuteron</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Helium-3</td>
<td>40, 23, 17</td>
<td>30</td>
</tr>
<tr>
<td>Helium-4</td>
<td>30, 22, 13</td>
<td>30</td>
</tr>
</tbody>
</table>

2. Major Components (BC3015)

- Magnet: Yoke Shape : 62.75(m)x 1.6(m)H
 Extraction Radius : 52(cm)
 Average Field : 15.4 KG
- RF System Type : 2x45° deg
- Oscillation System : M.O.P.A.
 Frequency : 47, 40, 31(MHz)
- Harmonics : 2, 4
- Ion Source Type : Hot Cathode PIG
- Deflector Type : Electrostatic