
[C-11]methyl iodide is a potentially useful precursor for the synthesis of [C-11]radiopharmaceuticals. The apparatus for the automated synthesis of [C-11]methyl iodide has been developed.

The apparatus consists of the program-manipulator, the temperature controller and the operation units. It automatically controls the following synthetic procedure; 1) [C-11]carbon dioxide is adsorbed on Molecular Sieve 4A, 2) [C-11]carbon dioxide is released from MS 4A by heating and introduced into the vessel containing LiAlH₄/THF cooled at -20°C under a He flow, 3) THF is evaporated off at 70°C under the reduced pressure, 4) water is injected into the vessel to form [C-11]methanol, 5) [C-11]methanol and water are transferred into the boiling HI solution of [C-11]methanol and HI, 6) [C-11]methyl iodide formed in the HI solution is passed through a sodalime and P₂O₅ column and collected in a cold solvent.

The apparatus has demonstrated that the synthesis is completed within 25 min after the irradiation with radiochemical yield of 50-70%. The yield has depended on the pretreatment of MS 4A and the preparation of LiAlH₄/THF.

2704 THE DEVELOPMENT OF THE PRODUCTION SYSTEM OF [F-18]-LABELLED GASES. Y. Monna, T. Ido, K. Ishiwata, T. Takahashi, Iwata, K. Ishiwata and T. Takahashi Cyclotron & Radioisotope Center, Tohoku University, Sendai

[F-18] is a potential positron emitter for cyclotron nuclear medicine. The production system of [F-18]-labelled gases has been developed for the synthesis of [F-18] radiopharmaceuticals. It is remotely controlled for rapid and safety handling of radioactive gases in a quantity of more than several hundred mCi of [F-18].

F₂-[F-18], one of the useful labeling precursors, is produced by the deuteron bombardment of the Ne gas containing 0.1% of carrier F₂ filled in the Ni chamber (2.5 × 20 cm) under the pressure of 25 kg/cm². It has proved that about 80% of [F-18] is constantly recovered from the chamber as F₂-[F-18] and it is used for the routine synthesis of [F-18]-containing such as FDG (18F), Fura-[F-18], Furd-[F-18] and Fdurd-[F-18].

The production of HF-[F-18], another useful labeling precursor, has been carried out using the purification chamber made of copper or stainless steel. After the irradiation, H₂ is introduced into the chamber and [F-18] adsorbed on the wall is recovered as HF-[F-18] by heating the chamber at 500-800°C. The chamber material and the temperature were examined for optimal conditions of the HF-[F-18] recovery.

2705 UPTAKE OF Ga-67 IN THE LIVER-DAMAGED RATS. Y. Hama, T. Sasaki, S. Kojima, and A. Kubodera Faculty of Pharmaceutical Sciences, Telyko University and Science University of Tokyo, Kanagawa and Tokyo

The uptake of Ga-67-Citrate was studied in the injured rat liver treated with chemical carcinogens or hepatotoxins, correlating with the biochemical changes in the liver. During hepatocarcinogenesis induced by 3'-Methyl-4-dimethylaminobenzene, Ga-67 accumulation in the liver was elevated in a biphasic manner. This change was in good accord with the patterns of the marker enzymes in cancer, the hepatic G-glutamyl-transpeptidase and glucose-6-phosphate dehydrogenase (G-6-PDH) activities. An increase of Ga-67 accumulation in rat liver was also observed in hepatocarcinogenesis induced by 2-Acetylaminofluorene. To obtain more information on the relationship of uptake of Ga-67 and biochemical changes in the liver, we investigated the acute injured liver treated with CCl₄, thioacetamide or allylformate. In result, uptake of Ga-67 in the liver elevated 2 to 3 times in the recovery from the injured liver. More over this elevation occurred with the changes of liver G-6-PDH activity and DNA synthesis. According to these results, uptake of Ga-67 in the liver-damaged rats appeared to be closely related with the increase of hepatic G-6-PDH and the rate of DNA synthesis.

2706 Ga-67 ACCUMULATION IN TUMOR CELLS AND HEPARAN SULFATE. S. Kojima and A. Kubodera Faculty of Pharmaceutical Sciences, Telyko University and Science University of Tokyo. Kanagawa and Tokyo

We previously investigated Ga-67 accumulation in the liver of rats during chemical hepatocarcinogenesis induced by 3'-Me-DAP, or hepatofibrogenesis induced by hepatotoxins connecting with biochemical changes. As a result, the elevated Ga-67 accumulation was observed in biphasic manner during hepatocarcinogenesis induced by 3'-Me-DAB. As regards the subcellular distribution of Ga-67, a remarkable change was found in 800 x g fraction. On the other hand, uptake of Ga-67 in the liver of rats treated with hepatotoxin was significantly increased during hepatofibrogenesis as a repair mechanism for necrosis. These data suggested that mucopolysaccharides (MPS) not only as the substance of connective tissue, but also as a component on cell surface of plasma membrane might be play an important role in Ga accumulation in tumor cells. To obtain more information, we investigated on the nature of Ga-U binding with MPS in detail. Results were as follows: 1) About 50% of the total radioactivity of Ga-67 was found in liver MPS fraction. 2) Radioactivity was detected at the position of heparan sulfate. 3) Elevated uptake of Ga-67 in the liver of CCl₄-treated rats was inhibited by aminoacetanilide or cycloheximide. Thus, heparan sulfate appears to play an important role of Ga accumulation mechanism.