EVALUATION OF CARDIAC PERFORMANCE WITH GRATED EXERCISE. K. Nakajima, H. Bunko, A. Tada, K. Hisada, S. Matsushita, Y. Murakami, and H. Asano Department of Nuclear Medicine and Internal Medicine, School of Medicine, Kanazawa University, Kanazawa

To evaluate the cardiac performance with graded exercise using the radionuclide angiography, the methodology of gated blood pool scan was studied. According to the ventricular phantom study, we used the thresholding method for the left ventricular edge detection. When using a scintillation camera with high sensitivity collimator, 90 sec of data acquisition was supposed to be sufficient and reliable. Exercise was performed in the supine position and its load was increased 25w stepwise in every three minute until fatigue or chest pain was induced. After determination of cardiac output from radionuclide angiography, end-diastolic volume, end-systolic volume, stroke volume, ejection fraction and cardiac output were calculated in each stage. Cardiac output determined by the dye dilution technique and cardiac output from radionuclide methods were calculated to be well correlated (r=0.925). Typical examples of normal subject, ishemic heart disease, pacemaker implantation and drug (propranolol) administration were shown.

ASSESSMENT OF WALL MOTION BY FIRST-PASS RADIONUCLIDE ANGIOGRAPHY USING MULTICRYSTAL CAMERA. H. Ota, Y. Iwaki, R. Kato, K. Yamagihara, Y. Takagi, T. Okumachi, T. Oshiro, Y. Morimoto, S. Bito, K. Ikezuki, N. Takeaki, and K. Yamanoto Kobe Central Municipal Hospital, Kobe, and Dept of Radiology & Nuclear Medicine, Kyoto University, Kyoto

Left ventricular ejection fraction (LVEF), cardiac output (CO), and regional wall motion abnormality (RWMA) estimated by radionuclide angiography (RNA) were comparatively evaluated with two dimensional echocardiography (Echo) as well as contrast ventriculography (CVG). RNA was performed after bolus injection of 20 mCi 99mTc-RBC using multicrystal camera in 24 cases with IHD.

LVEF and CO calculated from RNA were well correlated with those from CVG (r=0.89, and 0.74, respectively). Results of RWMA assessed by RNA and Echo were similar with those by CVG, however, both noninvasive methods underestimated RWMA slightly. In comparative evaluation of these noninvasive methods, RNA was inferior in the assessment of postero-basal segment, while Echo was inferior in apical segment.

We conclude that RNA using multicrystal camera is a reliable method to evaluate LVEF, CO, and RWMA noninvasively.

LEFT VENTRICULAR WALL MOTION IN PATIENTS WITH MYOCARDIAL INFARCTION: COMPARISON WITH RADIONUCLIDE ANGIOGRAPHY AND CONTRAST ANGIOGRAPHY. Y. Fudemoto, T. Yoshino, T. Oda, T. Kobayashi and K. Fujimoto Department of Circulatory Dynamics, The Center for Adult Diseases, Osaka, and M. Ohno Internal Medicine, Mimihara General Hospital, Sakai.

In the radionuclide angiography we employed right anterior oblique view routinely used in contrast angiography. Thirty three patients with myocardial infarction who underwent radionuclide and contrast angiography were studied in this view. Of 33 patients, 15 were anterior myocardial infarction, 10 inferior myocardial infarction and 8 anterior and inferior myocardial infarction.

Using the System 77, radionuclide angiography was taken in 20 ms. frame mode with 25 mCi of Tc99m via external jugular vein. Global ejection fraction was measured according to Jones' method. Segmental regional ejection fractions were calculated in tan-shaped ROI of anterolateral, apical and diaphragmatic segment using representative cycle.

Good correlations between segmental wall motion of contrast angiography and segmental regional ejection fraction of radionuclide angiography were recognized in anterolateral and diaphragmatic segment. However, there was no obvious correlation in apical segment.


With radionuclide left ventriculography used 90mTc-HSA, the quantitative analysis of left ventricular regional wall motion was performed in 100 patients with ischemic heart disease under gone coronary cineangiography. The purpose of this study was to determine the relation between abnormality of regional wall motion and locations of coronary artery lesions. Regional wall motion was classified three grades, normal wall motion, hypokinesis and akinesia according to standard pattern of normal subjects. Specificity of RI regional wall motion to coronary artery lesion was above 90%, and sensitivity of it was about 50%. False positive cases were included the patients with recanalization and good development of collateral artery.