1510

ESTIMATION OF RI REPORTING SYSTEM USING MICRO-COMPUTER.
Y. Ando, S. Kosuda, K. Masaki, A. Kubo, S. Hashimoto
Department of Radiology, Keio University Hospital, Tokyo

The micro-computer is becoming to be popular to us in recent years. We developed the reporting system using the micro-computer for the nuclear medicine. The micro-computer which we used was TRS-80 personal computer (Tandy Corp.) and had two mini-floppy disks. The printer had the capacity of 80 characters per a line. The machine cycle was longer than mini-computer and had a limitation of a mass storage size, but otherwise the micro-computer system was cheaper and easy to handle. It took 30 minutes to write 10 reports by this system, but on the other hand it took only 20 minutes to write 10 reports by the mini-computer. This system had only 2 mini-floppy disks and the storage size was about 80 Kbytes per one floppy disk. So, one floppy disk could store about 300 reports. At the small hospital, the reporting system by micro-computer is thought to be very useful. The merit is that this system will decrease the ununiformity of reports between the observers and this system will be able to retrieve the information of reports later.

1511

AN EVALUATION OF AN IMAGE PROCESSING SYSTEM VIEWED FROM FIDELITY
Katsulai, H. Arimitsu, H. Kawai, M. Dept. of Radiology, Chiba University School of Medicine, Chiba

It is well known that the characteristics of an Imaging system can be theoretically described by an MTF. However it seems to be difficult to directly express image quality by means of an MTF. In this study we propose an image processing system from the viewpoint of fidelity. Using the graphical representation, not only the consistency between standard and processed images but also a contrast change from one image to the other can be illustrated. LMSF is a number index which has eight modes of weighting. Comparisons between LMSF and the existing fidelity measures have been made by experiments using example images. As a result it has been shown that LMSF is considerably effective in the sense that it can represent discrepancies between two images when the existing fidelity measure fails to represent.

1512

A STUDY OF AN INTEROBSERVER VARIABILITY OF LESION DETECTABILITY.
T. Matsumoto, T.A. Iinuma, Y. Taneno, N. Fukuda, F. Shishido, K. Fukuhisa
National Institute of Radiological Sciences, Chiba

The purpose of this study is to investigate an interobserver variability of lesion detectability. 12 collimators for 67Ga having the different geometric resolution and sensitivity were designed. Using a digital computer, a process of imaging by the gamma camera system with above each collimator was simulated. A simulated image have from 0 to 4 defects in the background area. About 100 simulated images were generated and displayed on a X-ray film with the microdot imager-computer system. 20 observer were asked to see the X-ray films of simulated image and to judge whether or not there were defects in the image. The observer also were asked to rate the defect with 5 category scale. The ratio of the peak count obtained in imaging the square lesion to statistical fluctuations of the uniform background surrounding the lesion was defined as the signal-to-noise ratio (SN). The relation between the SN (t) and the score (y) which correspond to the 5 confidence levels given by several observers was represented by the logistic model: y = 1/(1+exp(a−1/A)). From the assumption which dy/dt = 1 equals to the interobserver variations of several observers for the defect with a SN, the relation between the interobserver variations and the SN or the score of 5 confidence level was derived. This analysis was applied to the data of layman (10), paramedical (5) and medical staff (5). We obtained the results that the average score y of the layman and paramedical group was equal to that of the medical staff, but the interobserver variations of the score of the former was larger than that of the latter.

1513

SPATIAL DOSE AT DEPARTMENT OF NUCLEAR MEDICINE.
K.Koshida, T. Orito, S. Sanada, R. Maekawa, T. Hiraki, M. Matsudaira, T. Maeda and K. Hisada
School of Paramedicine, Division of Central Radioisotopes and Department of Nuclear Medicine, Kanazawa University, Kanazawa.

This is to report the results measured Spatial Dose at Department of Nuclear Medicine. TLD calibrated with Co-60 gamma-ray were employed. The terms when measurement was made are 1 week and 2 weeks. The term of measurement of B.K.G. is from Dec. 29, 1980 to Jan. 3, 1981.

There were 11 places, at which upper values of B.K.G. were detected. The place where the maximum value was detected was 55.3mR/2w, where the patients who were administered radionuclides were waiting to receive the inspection. In the RI preparation room that the doctors stayed and administered radionuclides, there is about 67mR/2w. At the same time, Area Monitors and Film Badges were used, too.

The results with the above dosimeters suggested that the radiation exposure was less than the permissible dose provided by law. Therefore, it was confirmed that at Department of Nuclear Medicine, the radiation control for medical staffs was properly performed.