《ノート》

放射性医薬品の品質管理 (第2報)

――混入不純物核種とその評価――

Quality Control of Radiopharmaceuticals (II): Evaluation of Radioactive Impurities in Radiopharmaceuticals

森 厚文* 天野 良平** 安東 醇** 平木辰之助** 久田 欣一*

Hirofumi MORI*, Ryohei AMANO**, Atsushi ANDO**, Tatsunosuke HIRAKI** and Kinichi HISADA*

*Department of Nuclear Medicine, School of Medicine, Kanazawa University, 13–1, Takara-machi, Kanazawa-city, 920 **School of Paramedicine, Kanazawa University, Kodatsuno 5–11–80, Kanazawa-city, 920

I. はじめに

放射性医薬品中に混入している不純物放射性核 種の測定は,(1)イメージの解像力の低下,(2)内 部被曝線量の増加,(3) 廃棄の際の「スソ切り」 問題,の3点において重要である.著者らは第1 報において、⁹⁹Mo-^{99m}Tc ジェネレータによる溶 離液^{99m}TcO4⁻中の不純物核種の放射化学的測定 を行ない,混入の由来およびその影響について検 討した.本報では、^{99m}Tc 以外の10種の放射性医 薬品,すなわち⁵¹Cr,⁵⁹Fe,⁶⁷Ga,⁷⁵Se,⁸¹Rb-^{81m}Kr ジェネレーター,¹¹¹In,¹²³I,¹³¹I,¹³³Xe,²⁰¹Tl に 混入する不純物放射性核種の測定を,Ge (Li)半導 体による γ 線スペクトロメトリィにより行ない, さらにその定量結果に基づいて不純物放射性核種 の由来および内部被曝線量への寄与について検討 を加えた.

II. 対象と方法

金沢大学医学部附属病院核医学診療科で通常使 用している放射性医薬品を対象とした.まず最初 に有効期限内にその一部あるいは, 全部を分取し, その放射能をキュリーメータで測定し、半減期の 補正を行なって検定日時での放射能強度を求めた. 分取後一定期間放置し、混入する長半減期不純物 核種の測定を, Ge (Li) 半導体検出器 (NaI (Tl) と の相対計数効率10%)により行なった.不純物核 種の r 線スペクトルが,相対的に顕著になってき たところで定量的計測を行なった. さらに混入す る核種の同定が, γ線エネルギーだけでは難しい 場合は,同一条件での定期的計測を行なうことに より, 核種の決定を行なった. なお, ¹²³I中の ¹²⁵ Iの混入に関しては、低エネルギー光子用 (LEPS 用) pure Ge 半導体検出器にて測定した. 不純物放射性核種の内部被曝線量への寄与は、米 国核医学会の Medical Internal Radiation Dose Committee による MIRD 法にしたがって評価し

Key words: Radioactive Impurity, Radiopharmaceuticals, Quality Control, Internal Radiation Dose た. なお,それぞれの放射性医薬品に複数の市販 先がある場合は,複数の試料について上記測定を 行なった.

III. 結果と考察

1. 混入不純物放射性核種とその由来

検定日より3日後に測定した Na¹²³I の r 線ス ペクトルを Fig. 1 に示すが,¹²⁴I,¹²⁶I の混入が認 められる. なお¹²⁵I の混入は LEPS 用 pure Ge 半導体検出器にて証明された. 同様に,測定した 各種放射性医薬品中の長半減期不純物核種の結果

を Table 1 に示した.本稿で対象とした放射性医 薬品の目的放射性核種の製造法は 3 つに分類でき る.すなわち,(1) 原子炉中性子捕獲 (n, γ) 反応製 造核種 (⁵¹Cr, ⁵⁹Fe, ⁷⁵Se),(2) 核分裂片(¹³¹I, ¹³³Xe), (3) サイクロトロン製造核種 (⁶⁷Ga, ⁸¹Rb-^{81m}Kr, ¹¹¹In, ¹²³I, ²⁰¹Tl) である.

原子炉中性子捕獲反応製造核種である⁵¹Cr,⁵⁹Fe および ⁷⁵Se の放射性医薬品中には, 不純物核種 の混入はみられなかった.この製造法は一般にも っとも不純物核種の混入を避けることができる. しかし、前報の 98 Mo (n, r) 99 Mo 法によるジェネ レータ溶離液のように Moターゲット化合物中の Cs の ¹³³Cs (n, r) ¹³⁴Cs による ¹³⁴Cs の混入にみ られるように,原子炉熱中性子による(n, γ)反応 製造法は、ターゲット自体の化学的純度が低い場 合には不純物混入の原因となる¹⁾. 核分裂片を利 用した¹³¹Iおよび¹³³Xe中にも不純物放射性核 種は検出されなかった.これは、¹³¹Iおよび¹³³Xe がそれぞれハロゲン元素および希ガスに属し、他 の高放射能の核分裂片から比較的簡単に放射化学 分離精製ができるためである. 前報で示したよう に核分裂片 99Moの単離精製は 131I や 133Xe に 比べて難かしいことが不純物核種の混入の有無の 違いによっても明らかである¹⁾.

一方5種のサイクロトロン製造核種については,

Methods of Production	Radioactive Impurities: activity
(n, γ) reaction	134 Cs: 2-25×10 ⁻³ μ Ci
(n, γ) reaction	ND*
fission product	⁹⁹ Mo: 1.7−18×10 ⁻² µCi
	103 Ru: 2.3-4.0×10 ⁻³ μ Ci
	¹³¹ I: $1.4 - 55 \times 10^{-4} \mu \text{Ci}$
	140 Ba: 5.0 $-8.8 \times 10^{-3} \mu$ Ci
fission product	ND
cyclotron	ND
cyclotron	⁸³ Rb- ^{83m} Kr: 2.0 µCi
cyclotron	^{114m} In- ¹¹⁴ In: $2.7 \times 10^{-2} \mu$ Ci
cyclotron	¹²⁴ I: 2.0 μ Ci
	¹²⁵ I: $6.5 \times 10^{-2} \mu Ci$
	¹²⁶ I: $1.4 \times 10^{-1} \ \mu Ci$
cyclotron	202 Tl: 15.9 μ Ci
	Methods of Production (n, γ) reaction (n, γ) reaction fission product fission product cyclotron cyclotron cyclotron cyclotron cyclotron cyclotron cyclotron

Table 1 Radioactive Impurities in Various Radiopharmaceuticals

724

⁶⁷Ga を除けばいずれも混入不純物が検出された. ⁸¹Rb-^{81m}Kr 中の ⁸³Rb-^{83m}Kr, ¹¹¹In 中の ^{114m}In-¹¹⁴In, ¹²³I中の¹²⁴I, ¹²⁵I, ¹²⁶I, ²⁰¹TI中の²⁰²TIなど の不純物核種は目的核種の同位体であり、放射化 学的に分離除去することは不可能である. これら の不純物核種は厚いターゲット中では粒子のエネ ルギーに幅が生じるため、あるいはターゲットが 多同位元素であるために生じる. すなわち 82Kr $(p, 2n)^{81}Rb, {}^{112}Cd (p, 2n)^{111}In, {}^{124}Te (P, 2n)^{123}I,$ ²⁰³Tl(p, 3n)²⁰¹Pb→²⁰¹Tl反応等の目的核反応以外 に, ⁸⁴Kr (P, 2n) ⁸³Rb, ¹¹⁴Cd (P, n) ^{114m}In, ¹²⁴Te (P, n) 124 I, 125 Te (p, 2n) 124 I, 125 Te (p, n) 125 I, 126 Te $(p, 2n)^{125}I$, ¹²⁶Te (p, n) ¹²⁶I, ²⁰³Tl (p, 2n) ²⁰²Pb \rightarrow ²⁰²Tl などの核反応が副生成され、同位体である 不純物核種の混入が多くなる. 混入の由来を考え るとさらに高濃縮ターゲット使用、あるいは目的 核種の別の製造法の選択により、不純物核種の混 入を少なくすることができるであろう.特に比較 的不純物核種の強度が強い¹¹¹In, ¹²³I, ²⁰¹Tl につ

いて考察することは意義があろう.

2. 不純物核種が及ぼす影響について

不純物核種の定量結果によると⁸¹Rb-^{81m}Kr ジ ェネレータ中の,⁸³Rb-^{83m}Kr,¹¹¹In 中の^{114m}In-¹¹⁴In,¹²³I 中の¹²⁴I,²⁰¹Tl 中の²⁰²Tl が,他の放射 性医薬品中の不純物核種に比べて強かった.しか し,上記4種の放射性医薬品も放射性医薬品基準 を満足している.また,三枝ら³⁾の報告した⁶⁷Ga, ¹²³I,²⁰¹Tl 中の汚染核種の量と比較しても低値を 示した.

これら4種の放射性医薬品中の不純物核種につ いて内部被曝線量への寄与について計算を行なっ た.^{83m}Kr, ^{114m}In-¹¹⁴In, および²⁰²Tl の放出放射 線の種類と数についての核データおよび平衡吸収 線量定数 (*d*i) は MIRD パンフレットに記載され ていないため, Table of Isotope⁴), Nuclear Spectroscopy Table⁵) を使用し, MIRD パンフレット No. 4⁶) の計算方法にしたがって算出し, その計 算値をTable 2~5 に示した.他の核種 (^{81m}Kr, ¹¹¹

Padiation	Mean Number	Mann France (Mall)	Δi	
Radiation	Disintegration	- Mean Energy (Mev)	(g·rad/µCi-hr)	
Gamma 1	0.049	0.009	0.001	
M_1 int. con. electron (γ_1)	0.692	0.009	0.013	
M_2+_3 int. con. electron (γ_1)	0.152	0.009	0.003	
N int. con. electron (γ_1)	0.138	0.009	0.003	
Gamma 2	0.001	0.032		
K int. con. electron (γ_2)	0.238	0.018	0.009	
L_1 int. con. electron (γ_2)	0.018	0.030	0.001	
L_2 int. con. electron (γ_2)	0.279	0.030	0.018	
L_3 int. con. electron (γ_2)	0.361	0.030	0.023	
M int. con. electron (γ_2)	0.117	0.032	0.008	
N int. con. electron (γ_2)	0.010	0.032	0.001	
$K\alpha_1 X$ ray	0.083	0.013	0.002	
$\mathbf{K}\alpha_2 \mathbf{X}$ ray	0.041	0.013	0.001	
$\mathbf{K}\beta_1 \mathbf{X}$ ray	0.018	0.014	0.001	
$\mathbf{K}\beta_2 \mathbf{X}$ ray	0.002	0.014	_	
LX ray	0.047	0.002	_	
KLL Auger electron	0.069	0.011	0.002	
KLX Auger electron	0.023	0.012	0.001	
KXY Auger electron	0.008	0.014		
LXY Auger electron	0.895	0.001	0.002	
MXY Auger electron	2.971	0.0003	0.002	

Table 2 Effective absorbed energy data for ^{83m}Kr

核医学 17巻6号(1980)

Dediction	Mean Number	Maan Energy (MaV)	 ∆i	
Radiation	Disintegration	- Mean Energy (Mev)	(g·rad/µCi-hr)	
Gamma 1	0.033	0.725	0.051	
K int. con. electron (γ_1)	0.000	0.699		
Gamma 2	0.034	0.558	0.040	
K int. con. electron (γ_2)	0.000	0.531		
Gamma 3	0.157	0.190	0.064	
K int. con. electron (γ_3)	0.374	0.162	0.129	
L_1 int. con. electron (γ_3)	0.027	0.186	0.011	
L_2 int. con. electron (γ_3)	0.144	0.186	0.057	
L_3 int. con. electron (γ_3)	0.113	0.187	0.045	
$K\alpha_1 X$ ray (EC)	0.02	0.023	0.001	
$K\alpha_2 X$ ray (EC)	0.01	0.023	-	
$K\beta_1 X$ ray (EC)	0.006	0.026	—	
$K\beta_2 X$ ray (EC)	0.001	0.027	—	
$K\alpha_1 X$ ray (IT)	0.20	0.024	0.010	
$K\alpha_2 X$ ray (IT)	0.10	0.024	0.005	
$K\beta_1 X$ ray (IT)	0.05	0.027	0.003	
$K\beta_2 X ray (IT)$	0.01	0.028	0.001	
LX ray	0.089	0.003	0.001	
KLL Auger electron	0.048	0.020	0.002	
KLY Auger electron	0.020	0.023	0.001	
KXY Auger electron	0.089	0.003	0.001	
LXY Auger electron	0.655	0.003	0.004	
MXY Auger electron	1.427	0.001	0.002	

 Table 3 Effective absorbed energy data for ^{114m}In

 Table 4
 Effective absorbed energy data for ¹¹⁴In

Padiation	Mean Number	Moon Energy (MoV)	Δi	
Raulation	Disintegration	- Mean Energy (Mev)	(g·rad/µCi-hr)	
 β1-ray	0.979	0.782	1.631	
β_2 -ray	0.001	0.271	0.001	
β+-ray	0.000	0.134	_	
Gamma 1	0.001	1.299	0.004	
Gamma 2	0.000	0.576	_	
$K\alpha_1 X$ ray	0.004	0.023		
$\mathbf{K}\alpha_2 \mathbf{X}$ ray	0.008	0.023	_	
$K\beta_1 X$ ray	0.002	0.026	_	
$\mathbf{K} \boldsymbol{\beta}_2 \mathbf{X}$ ray	0.000	0.027		
LX ray	0.002	0.004	_	
KLL Auger electron	0.002	0.021	_	
KLX Auger electron	0.001	0.024		
KXY Auger electron	0.000	0.028	_	
LXY Auger electron	0.017	0.003	_	
MXY Auger electron	0.039	0.001	_	

放射性医薬品の品質管理(第2報)

Padiation	Mean Number	Mean Energy (MeV)	Δi (g.rad/#Ci-hr)
Radiation	Disintegration	- Mean Energy (Mev)	(grad/µer m)
Gamma 1	0.911	0.440	0.853
K int. con. electron (γ_1)	0.031	0.354	0.023
$L_1 + L_2$ int. con. electron (γ_1)	0.009	0.424	0.009
L_3 int. con. electron (γ_1)	0.003	0.427	0.002
Gamma 2	0.009	0.520	0.010
K int. con. electron (γ_2)	0.000	0.434	
Gamma 3	0.001	0.950	0.001
$K\alpha_1 X$ ray	0.23	0.069	0.034
$K\alpha_2 X ray$	0.42	0.071	0.063
$K\beta_1 X ray$	0.15	0.080	0.026
$K\beta_2 X ray$	0.04	0.083	0.007
L X ray	0.314	0.011	0.007
KLL Auger electron	0.02	0.058	0.002
KLY Auger electron	0.013	0.068	0.002
KXY Auger electron	0.001	0.079	_
LXY Auger electron	0.583	0.008	0.010
MXY Auger electron	1.698	0.003	0.011

Table 5 Effective absorbed energy data for ²⁰²Tl

 Table 6
 The abosrbed dose to the total body due to the presence of various radiopharmaceuticals and their radioactive impurities

	Relative Activity	Effective Half Life (day)	Total Body ΣΔιφι (g·rad/μCi-hr)	Total Body Absorbed Dose (mrad/µCi)	Total Body Relative Dose
^{81m} Kr	^{81m} Kr 1		0.23	2.4×10 ⁻³	1
	^{83m} Kr 1.0×10 ⁻³	_	0.09	9.3×10-4	3.9×10^{-4}
¹¹¹ In	¹¹¹ In 1	2.7	0.41	0.55	1
(111InCl ₃)	^{114m} In- ¹¹⁴ In 2.9×10 ⁻⁴	24	2.05	24.3	0.013
	¹²³ I 1	0.55	0.21	0.057	1
123I	¹²⁴ I 1.0×10 ⁻²	4.0	1.11	2.19	0.38
(Na ¹²³ I)	¹²⁵ I 3.3×10 ⁻⁴	41.9	0.12	2.48	0.014
	¹²⁶ I 7.0×10 ⁻⁴	12.1	0.61	3.64	0.045
²⁰¹ Tl	²⁰¹ Tl 1	1.9	0.18	0.17	1
(201TlCl)	²⁰² Tl 2.7×10 ⁻³	3.5	0.42	0.72	0.011

In, ¹²³I, ¹²⁴I, ¹²⁵I, ¹²⁶I および ²⁰¹Tl については MIRD パンフレットの値を利用した⁷⁾. さらに吸 収係数については電子線は1とし, 電磁波につい ては MIRD パンフレット No. 5⁶⁾ にしたがって 標的臓器,線源臓器ともに全身として評価した. それぞれ4目的核種 (^{81m}Kr, ¹¹¹In, ¹²³I, ²⁰¹Tl) の 全身被曝線量への寄与を1として, 不純物の寄与 を目的核種の相対値として Table 6 に示した. I, In, Tl の放射性医薬として NaI, InCl₃, TlCl を例 にとり生物学的半減期をそれぞれ 138日, 48日, 5日⁸⁾として有効半減期を計算した. Kr の場合は (持続注入法), クリアランスが非常に早いので, その累積放射能は平衡後の親核種 (Rb)の放射能 に^{81m}Kr の持続注入時間 (30分として計算)を乗 じた値を用いた. 不純物核種の ^{114m}In-¹¹⁴In, ¹²⁴I, ¹²⁵I, ¹²⁶I, ²⁰¹Tl は 1 μ Ci 当たりの全身吸収線量 (mrad/ μ Ci)の観点では目的核種よりもいずれも 高値を示すが, 混入の程度が Table 1 に示したよ うにわずかであるため、これらの不純物核種によ る内部被曝線量への寄与はわずかであった.

IV. 結 語

10種類の放射性医薬品 (⁵¹Cr, ⁵⁹Fe, ⁶⁷Ga, ⁷⁵Se, ⁸¹Rb-^{81m}Krジェネレータ、¹¹¹In、¹²³I、¹³¹I、¹³³Xe、 ²⁰¹Tl) 中の混入不純物核種を Ge (Li) 半導体検出 器により測定した. 原子炉中性子捕獲 (n, γ) 反応 製造核種である ⁵¹Cr, ⁵⁹Fe, ⁷⁵Se ならびに核分裂 片である ¹³¹I, ¹³³Xe 中には不純物放射性核種は 検出されなかった.一方、その他の5種のサイク ロトロン製造核種には、67Gaを除いていずれも 混入不純物核種が検出された. これらのうち比較 的不純核種の多い^{81m}Kr, ¹¹¹In, ¹²³I, ²⁰¹Tl の放射 性医薬につき,不純物核種の内部被曝線量への寄 与増加分を MIRD 法にしたがって算出した. そ の結果、いずれも有効期限内で使用するならば不 純物核種の相対強度は弱く,内部被曝線量への寄 与は少ないことがわかった.しかし、⁸¹Rb-⁸¹mKr ジェネレータ中の ⁸³Rb-^{83m}Kr および ¹¹¹In 中の

^{114m}In については,その半減期が長いため廃棄に 関して今後更に検討を要すると考えられた.

献

文

- 天野良平,他:^{99m}Tc 溶離液中の不純物核種. 核医 学 17: 601-606, 1980
- 2) 厚生省薬務局審査課編:放射性医薬品基準ハンドブ ック,日本アイソトープ協会,東京,1979
- 三枝健二,有水 昇,山本哲夫:短半減期放射性医 薬品中の汚染核種. Radioisotopes 27:223-227,1975
- 4) Ledever CM, Shirley VS, Browne E, Dairiki JM, Doebler RE, Shihab-Eldin AA, Jardine L, Tuli JK, Buyrin AB: Table of Isotope, 7th edition, John Wiley & Sons, Inc., New York, 1978
- 5) Wapstra AH, Nijgh GJ: Nuclear Spectroscopy Tables, Intersciences, New York, 1959.
- 6) MIRD Committee: MIRD Pamphlet No. 1-6 (1968-1970)
- 7) MIRD Commitee: MIRD Pamphlet No. 11, 1975
- ICRP publication 2: Recommendations of International Commission on Radiological Protection Report of Committee II on Permissible Dose for Internal Radiation, Pergamon Press, New York, 1960