biliary excretion of bucolome or its metabolites was measured from its radioactivity. Two hrs, biliary recovery of 14C-bucolome activity was 24.5±4.0 (%) n=3, in rats given 10mg/100g, and 19.0±4.0 (%) n=3 in rats given 20mg/100g. The cumulative biliary excretion was almost linear for 2 hrs in both groups. The relation between bile flow rate (μl/min/100g, Y) and biliary excretion rate of bucolome (μmol/min/100g, X) was found to be $Y = 27X + 3.87 (r=0.85 \ n=60)$. It is suggested that bucolome (possibly in glucuronide conjugates form) is excreted appreciably in the rat bile and that cholresis can be explained as an osmotic cholresis with the assumption that 27 μl of bile can be produced by the excretion of 1 μmol of bucolome or its metabolite(s).

The effect of Spironolactone Pretreatment on the Biliary Excretion and Renal Accumulation of Mercury in the Rat

R. Miura, K. Kitani and S. Kanai
First Laboratory of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology

An agreement has not been achieved in the literature concerning the effect of spironolactone (SP) pretreatment on the biliary excretion of iv administered inorganic mercury ion (Hg⁺⁺). Haddow et al, and the authors reported more than 10 times increase in the biliary excretion of mercury in SP pretreated rats, while Selye, Garg and more recently Klaassen independently reported the absence of a significant increase of the biliary excretion of mercury by SP pretreatment. The authors pursued in the present study the cause for this discrepancy, by comparing several different experimental conditions. In male SPF, SD rats (250g), SP (5mg/100g) was given intraperitoneal (IP) or orally (Oral) 1–3 hrs prior to the mercury study. Aldactone A tablets (A) was ground into powder and was suspended in water (W), ethylene glycol (EG) or propylene glycol (PG). Pure SP material (SP) was also tested in the same preparation. 203Hg was used as a tracer for inorganic mercury. When the mercury dose of 0.2mg/100g was used as a challenging mercury, the biliary excretion of mercury for 2 hr. (\% of the dose mean ±SD) was significantly and similarly increased P<0.01, in all treated groups (Oral-W-A 13.13±3.08, IP-W-A 10.49±1.62, IP-EG-A 12.99±1.61, IP-EG-SP 12.58±1.39) compared with control rats given PG only (1.45±0.12). Renal accumulation at 2 hrs post injection in treated rats, was 28.52±4.00, 17.68±1.50, 13.73±5.67, 6.58±2.65 respectively which were all significantly lower than control value (34.77±4.18). But difference in it was concluded that the difference in the effect of SP on the biliary excretion of mercury observed in the past reports might be most probably due to the difference in the preparation or administration of SP.

On the other hand, the difference in the preparation or administration of SP was shown to affect significantly the renal accumulation of mercury in the rat.

Changes in Liver Scan Following Splenectomy

F. Nakamishi, T. Kasuga, T Kobayashi
Department of Radiology, Faculty of Medicine, Shinshu University

Changes in liver size, shape and hepatic uptake constant (KL) were studied in liver scan of 11 patients following splenectomy. The patients were diagnosed as liver cirrhosis with esophageal varices and hypersplenismus. They underwent splenectomy and showed better clinical course except one.

A preoperative liver study is compared with the study done 3 to 35 months following splenectomy. Liver size was measured and left to right lobe area ratio was calculated in anterior liver image using

491