uniform, and that 99mTc-heat-denaturated cells could be used for splenic clearance study in stead of 51Cr-ones.

Double tracing study using 99mTc-hea-t-cells and 51Cr-labelled NEN (N-ethylmaleimid)-treated cells was carried out in 30 subjects. The result was satisfactory so far as the double tracing technique was concerned.

Spleen Scintigraphy with 99mTc-Labelled red Blood Cells

M. MIKI* and K. NAKAJIMA**

*The First Division of Internal Medicine, Faculty of Medicine, Kyoto University, Kyoto
**Central Radioisotope Clinic, Kyoto University Hospital, Kyoto

Recently a new kit for 99mTc-labelled red blood cells (RBCs) has been available and utilizing this kit, spleen scintigraphy was done. Method is as follows: 1 withdraw from patient 2 ml of heparinized blood. 2 Add 0.3 µg of stannous pyrophosphate solution, prepared just before use and incubate for 5 minutes at room temperature, mixing gently. 3 Centrifuge and discard all the plasma layer. 4 Add 0.5–1.5 mCi (about 0.5 ml) of 99mTc-pertechnetate and incubate for 5 minutes at room temperature mixing gently. 5 Wash and centrifuge the suspension and adjust its volume to 2 ml with physiologic saline. 6 Place the suspension in water bath for 15 minutes at 49.5 ±0.5°C, or add 1.5 mg of Bromomercurehydroxypropane (BMHP) to the suspension. 7 Inject and 30 minutes—3 hours later take spleen scintigraphy.

Comparing above standard method of 84.9% labelling yields, smaller amount of stannous pyrophosphate (0.12 µg) showed higher labelling yields of RBCs 90.5%. Concerning to time for heat damaged RBCs, 20–30 minutes is suitable because of cardiac image from incomplete damage and of hepatic image from excess damage to RBCs. It is better to use BMHP for routine spleen scintigraphy because this method is much less troublesome and it takes much shorter wasting time.

Spleen scintigraphy with 99mTc-RBCs kit (TCK-11) from CIS is rather simple and gives smaller amounts of radiation to medical stuffs for preparation and spleen scintigrams are good, even in the case of splenomegaly. 99mTc-spleen scintigraphy gives lesser radiation to patients and much less interference to other isotopic tests or examinations than 51Cr-spleen scintigraphy.