and radiogaschromatography.

When injected intravenously in mice, the radioactivity accumulated in blood, liver, kidney and brain. The brain uptake was found to be about 2.5% of injected dose per gram tissue at 5 min after injection. This result suggests that ¹¹C-caffeine may be a useful brain scanning agent.

Large Scale Production of ¹¹C-Methanol—Precursor for ¹¹C-Labeled Organic Compounds

Ren Iwata, Tatsuo Ido, Hideo Saji, Kazutoshi Suzuki, Kazuhiko Tamate, Kikuo Yoshikawa, Yoshihiko Kasida National Institute of Radiological Sciences, Chiba

Though ¹¹C-labeled organic compounds are expected to be very useful for clinical diagnosis, their practical uses are often confronted with difficulties, most of which are attributed to a short half life of ¹¹C (20.34 min). A large scale of precursors have to be produced for their synthesis, followed by the necessity of procedures rapid and remote-controlled techniques. We have made a try on a large scale production of ¹¹C-methanol, one of main precursors, for the purpose of a practical use of ¹¹C-labeled organic compounds.

 $^{11}\text{CO}_2$ was produced by 9 MeV proton irradiation at 20 μA with the $^{14}\text{N}(\text{p},\alpha)^{11}$ Creaction. Immediately after the end of irradiation, $^{11}\text{CO}_2$ was transferred in a current of a target gas of N₂ to the reaction apparatus. The synthetic procedures of $^{11}\text{CH}_3\text{OH}$ from $^{11}\text{CO}_2$ are as below. For an introduction of $^{11}\text{CO}_2$ into a LiAlH₄

 $^{11}\text{CO}_2 \xrightarrow{(1)} \text{LiAl}(O^{11}\text{CH}_3)_4 : (1)$ 19 mg LiAlH₄ in 0.5 m/ diethyl carbitol (0°C)

LiAl(O¹¹CH₃)₄ $\xrightarrow{(2)}$ ¹¹CH₃OH : (2) 0.7 m*l* carbitol (100°C)

solution, two methods were compared: (A) 11CO2

was directly introduced into the LiAlH₄ solution from a target tube (100 ml/min), and (B) ¹¹CO₂ was first collected in a silica gel trap at -78° C (500 ml/min), then released by heating to 170°C and carried by a current of N₂ into the LiAlH₄ solution. Carbitol was added to the solution and the temperature was immediately brought to 100°C. The resulting ¹¹CH₃OH was carried by a current of N₂ and collected in an acetone trap at -78° C. The purity was examined by radiogas-chromatography.

For a large scale production, the method of (B) was superior to that of (A) in a ¹¹CH₃OH yield. The performance of the production was completed within 15 min after the EOB. The use of electric valves helped a rapid and remote-controlled synthesis of ¹¹CH₃OH. The radiochemical yield of ¹¹CH₃OH was 74% and its radiochemical purity was more than 99.9%. It turned out that more than 800 mCi of ¹¹CH₃OH can be produced if a high pressure target (>10 atm) and a high incident energy (>15 MeV) are used.

The Production of Pure ¹²³I and the Possibility for the Clinical Application of ¹²⁵Xe

Kazutoshi Suzuki, Tatsuo Ido, Ren Iwata, Kiruo Yoshikawa, Kazuhiko Tamate, Hideo Saji, Tomoyuki Rikitake, Yukio Tateno and Yoshihiko Kasida National Institute of Radiological Sciences, Chiba

It is known that ¹²³I has ideal characteristics for the diagnosis of thyroid gland. On the other hand ¹²⁵Xe is not known so widely, although it seems to be useful for the clinical diagnosis.

Pure 123 I without impurities other than <0.2%

 ^{125}I was produced by the ^{127}I (p, 5n) $^{123}\text{Xe}\frac{\beta^+,\text{EC}}{2.1~\text{h}}$ ^{123}I reaction with 60 MeV protons in 1.5 g/cm² NaI target. At the same time ^{125}Xe was obtained as by-products. To increase the yield of ^{123}I ,