and was efficiently high from 30 miuntes to 60 minutes after the injection of Sn-PYP, which an average of 90% was achieved in 19 cases after the interval of 30 min. On the other hand the dose-dependance of injected Sn-PYP was not clarified. Although there are still many points to be clarified as to binding mechanism of pertechnetate-RBC complex, the in vivo labeling method seems to be able to be used with the sufficient labeling efficiency and technical easiness. ## A High Tumor/Blood Ratio Complex of 99mTc-Bleomycin (Tc-BLM) A. Yokoyama*, M. Saito*, Y. Terauchi*, H. Tanaka*, T. Odori**, R. Morita**, T. Mori** and K. Torizuka** *Kyoto University, Faculty of Pharmaceutical Sciences **Kyoto University School of Medicine The usefulness of Tc-BLM in tumor diagnosis has been considered to be greatly dependent on the chemical state of labeled complex; this can be controlled by labeling condition, mainly the amount of SnCl₂ and pH of the labeling condition. These parameters were studied in detail. Tc-BLM complex were analyzed by thin layer chromatography (MeOH:10% NH₄OAc, 1:1) and electrophoresis (EP) (pH 7.0 phosphate buffer, 500 V, 1 hr). Tissue distribution was studied with Ehrlich tumor bearing mice. Studies have shown that a stable Tc-BLM, in which Tc in a tetra valent state, without being hydrolyzed was needed for a high tumor to blood ratio. Hydrolysis of Tc is influenced by the amount of SnCl₂ and pH of the labeling solution. So, the use of a minute amount of SnCl₂ and its quick addition into the mixture of BLM and ^{99m}TcO₄⁻ is required to minimize the hydrolysis phenomenon. Under this condition, the pH effect is studied and an electrically neutral complex formation is obtained at pH 6. The neutral complex is stable against hydrolysis. This feature can theoretically be explained; at this pH, according to the p K_a value of BLM, the third N atom of BLM can be strongly coordinated. In vivo distribution of the neutral complex is analyzed and the highest tumor/blood ratio is achieved (tumor/blood, 2.5 at 3 hr). It is concluded that this Tc-BLM complex prepared under very strictly controlled condition such as a minute accurate amount of SnCl₂ and very narrow pH range is the most valuable one for a clinical use. ## The Preparation of ¹¹C-Methyl Iodide and its Use in the Synthesis of ¹¹C-Caffeine Hideo Saji*, Tatsuo Ido**, Ren Iwata**, Kazutoshi Suzuki**, Kazuhiko Tamate**, Kikuo Yoshikawa** and Yoshihiko Kashida** *Kyoto University School of Medicine, **National Institute of Radiological Sciences Caffeine was labeled with ¹¹C using ¹¹CH₃I and its distribution in mice was studies. ¹¹CO₂ produced in the NIRS Medical Cyclotron in a (p, α) reaction, was reduced to ¹¹CH₃OH by LiA1H₄. ¹¹CH₃OH was converted by HI to ¹¹CH₃I which is useful for methylation several groups present in many natural substances. The preparation of ¹¹CH₃I was completed in 25 min after the EOB by using the remote-controlled techniques and the radiochemical yield was 64%. Caffeine was labeled by action of $^{11}\text{CH}_3\text{I}$ on theophylline. After purification by passing through on a alumina column, ^{11}C -caffeine was dissolved in physiologic saline. The overall time for the synthesis and purification was about 45 min with 40% radiochemical yield. The radiochemical purity was checked by thin layer chromatography on silica gel (solvent: CHCl₃: CH₃OH=19:1) and radiogaschromatography. When injected intravenously in mice, the radioactivity accumulated in blood, liver, kidney and brain. The brain uptake was found to be about 2.5% of injected dose per gram tissue at 5 min after injection. This result suggests that ¹¹C-caffeine may be a useful brain scanning agent. ## Large Scale Production of ¹¹C-Methanol—Precursor for ¹¹C-Labeled Organic Compounds Ren Iwata, Tatsuo Ido, Hideo Saji, Kazutoshi Suzuki, Kazuhiko Tamate, Kikuo Yoshikawa, Yoshihiko Kasida National Institute of Radiological Sciences, Chiba Though ¹¹C-labeled organic compounds are expected to be very useful for clinical diagnosis, their practical uses are often confronted with difficulties, most of which are attributed to a short half life of ¹¹C (20.34 min). A large scale of precursors have to be produced for their synthesis, followed by the necessity of procedures rapid and remote-controlled techniques. We have made a try on a large scale production of ¹¹C-methanol, one of main precursors, for the purpose of a practical use of ¹¹C-labeled organic compounds. $^{11}\text{CO}_2$ was produced by 9 MeV proton irradiation at 20 μA with the $^{14}\text{N}(\text{p},\alpha)^{11}$ Creaction. Immediately after the end of irradiation, $^{11}\text{CO}_2$ was transferred in a current of a target gas of N₂ to the reaction apparatus. The synthetic procedures of $^{11}\text{CH}_3\text{OH}$ from $^{11}\text{CO}_2$ are as below. For an introduction of $^{11}\text{CO}_2$ into a LiAlH₄ $^{11}\text{CO}_2 \xrightarrow{(1)} \text{LiAl}(O^{11}\text{CH}_3)_4 : (1) 19 \text{ mg LiAlH}_4 \text{ in } 0.5 \text{ m} l \text{ diethyl carbitol } (0^{\circ}\text{C})$ LiAl(O¹¹CH₃)₄ $\xrightarrow{(2)}$ ¹¹CH₃OH : (2) 0.7 m*l* carbitol (100°C) solution, two methods were compared: (A) 11CO2 was directly introduced into the LiAlH₄ solution from a target tube (100 ml/min), and (B) ¹¹CO₂ was first collected in a silica gel trap at -78° C (500 ml/min), then released by heating to 170°C and carried by a current of N₂ into the LiAlH₄ solution. Carbitol was added to the solution and the temperature was immediately brought to 100°C. The resulting ¹¹CH₃OH was carried by a current of N₂ and collected in an acetone trap at -78° C. The purity was examined by radiogas-chromatography. For a large scale production, the method of (B) was superior to that of (A) in a ¹¹CH₃OH yield. The performance of the production was completed within 15 min after the EOB. The use of electric valves helped a rapid and remote-controlled synthesis of ¹¹CH₃OH. The radiochemical yield of ¹¹CH₃OH was 74% and its radiochemical purity was more than 99.9%. It turned out that more than 800 mCi of ¹¹CH₃OH can be produced if a high pressure target (>10 atm) and a high incident energy (>15 MeV) are used. ## The Production of Pure 123I and the Possibility for the Clinical Application of 125Xe Kazutoshi Suzuki, Tatsuo Ido, Ren Iwata, Kiruo Yoshikawa, Kazuhiko Тамате, Hideo Saji, Tomoyuki Rikitake, Yukio Tateno and Yoshihiko Kasida National Institute of Radiological Sciences, Chiba It is known that ¹²³I has ideal characteristics for the diagnosis of thyroid gland. On the other hand ¹²⁵Xe is not known so widely, although it seems to be useful for the clinical diagnosis. Pure 123 I without impurities other than <0.2% ^{125}I was produced by the ^{127}I (p, 5n) $^{123}\text{Xe}\frac{\beta^+,\text{EC}}{2.1~\text{h}}$ ^{123}I reaction with 60 MeV protons in 1.5 g/cm² NaI target. At the same time ^{125}Xe was obtained as by-products. To increase the yield of ^{123}I ,