flat curve obtained in control rats. ¹³CO₂ curves showed simillar pattern as ¹⁴CO₂ curves in rats with and without operation. When trace dose of ¹³C-glycine alone was administrated, ¹⁴CO₂ curves showed earlier and lower peaks than those obtained after loading dose of glycine. Our results suggest that ¹³C-glycine-cholate can be used as clinical breath test for the detection of bacterial deconjugation of bile salts. The animal model should prove useful for the preliminary comparative studies of various ¹⁴C- and ¹³C-breath tests prior to their clinical application. ## Separate Counting of Gamma Rays of ⁵¹Cr with well Scintillation Counter and Beta Rays of ³²P with Geiger Counter Tadashi Tamiya*, and Hiroshi Saito** *Central Radiology Service, Nagoya University Hospital, **Department of Radiology, Nagoya University School of Medicne Mixed radionuclide as ⁵⁹Fe in blood sample in determining mean red cell life span with DF³²P can be eliminated by chemical extraction of heme as we reported previously. However, the separation of ⁵¹Cr counts from ³²P is not so easy, since the channels ratio method or chemical extraction method are not available. Therefore, we prepared the standard and blood sample for well and Geiger counting respectively. The separate counts can be obtained by calculation using the following formula. - (1) Standard of ³²P for Geiger counting ——Pg " ⁵¹Cr " ——Cg - (2) Standard of ³²P for well counting —Pw (3) The constant ratios of counting efficiency in Geiger and Well for ³²P and ⁵¹Cr are P and C $$P = Pg/Pw$$ $C = Cg/Cw$ (4) Sample S containing ³²P and ⁵¹Cr is counted in Geiger and well counter $$Sg=Pg+Cg$$ $Sw=Pw+Cw$ (5) Then the formula gives respective counts needed. $$Pg = (Sg - C.Sw)/(P-C)$$ $Cw = (Sg - P.Sw)/(C-P)$ This separate counting using two kinds of counters may be called "Cross Counting Method." ## A Proposal for the Standardization of Iron Absorption Test by Whole Body Counting Hiroshi Saito*, Ken Ohara*, and Tadashi Tamiya** *Department of Radiology, Nagoya University School of Medicine,, **Central Radiology Service, Nagoya University Hospital Iron absroption study is an important method for the diagnosis and therapy of iron deficiency anemia and hemochromatosis. The standardization of iron absorption procedure is needed for the international comparison of iron absorption data. We propose the method to be standardized as follows. I. Oral radioiron dose Radioiron with 4 mg of carrier in the form of ferrous sulfate is administered to the patient kept fasting overnight. Eating and drinking are not allowed for 2 more hours after oral dose. II. Counting Whole body counting is performed 3 or more times in 14 days. III. Geometry correction The ratio of air to body count 10 to 14 days after intravenous radioiron injection and mean body radius showed correlation. This correlation is available when a ring-type whole body counter is used. For the patient to whom ferrokinetics study is scheduled in series, own geometry correction coefficient is available. For the patient to whom no ferrokinetics study is scheduled the correlation curve is used. In case of one meter arc geometry, patient is counted in supine and prone and the data is averaged. ## IV. Evaluation of the results Correlation between percent iron absorption and reticulocyte count is used. ## V. Others Blood transfusion and iron medication is prohibited from 2 weeks before the study. Total amount of transfused blood and iron dose should be investigated.