(mean±S.D.) ng/ml in control subjects, 5.09 ±2.40ng/ml in patients with hyperthyroidism and 0.52±0.28ng/ml in patients with hypothyroidism. The value was 1.19±0.37ng/ml in patients with chronic thyroiditis and 2.05 ±0.70ng/ml in those with subacute thyroiditis. Patients with simple goiter and nodular goiter had normal T3 concentration.

The discrepancies between T3 levels and values of T3-RSU, T4 and T7 were noted in patients with hyperthyroidism and hypothyroidism under treatment. Some of patients with hyperthyroidism receiving antithyroid drugs and those with hypothyroidism taking desiccated thyroids had high levels of T3, whereas values of T3-RSU, T4 and T7 were in normal range. Other cases of hyperthyroidism under therapy had normal T3 concentration with low values of T3-RSU, T4 and T7. The discrepancy was also noticed in patients with anorexia nervosa, having significantly lowered levels of T3 and normal values of T3-RSU, T4 and T7.

Radioimmunoassay for Measurement of Triiodothyronine in Human Serum and Urine

K. MIYAI, K. ISHIBASHI, M. AZUKIZAWA and Y. KUMAHARA

The Central Laboratory for Clinical Investigation, Osaka University Hospital

A radioimmunoassay (RIA) system for measurement of triiodothyronine (T3) in human serum and urine has been developed. A specific antibody to T3 was prepared in rabbits by immunization with a conjugate of T3 with human serum albumin. 8-anilino-1-naphthalene sulfonic acid was used for TBG inhibitor. Normal human serum (or urine) was treated with dextran-coated charcoal and added to standard as T3 free serum (or urine). Bound form was separated from free form by means of double antibody method. Cross-reactivity with T4 was less than 0.01% in the T3 RIA system. The recovery of added T3 to serum (or urine) was 96—108%. Dilution of serum (or urine) resulted in parallel curves to that obtained for the standard T3. The minimal detectable amount of T3 was 12.5ng/dl when 50μl of serum was assayed. Coefficient variation for serum T3 determination was 4.9—6.0% (within-assay) and 6.7 —8.8% (between-assay) respectively. Serum concentrations of T4 and T3 were determined in various disorders which were divided in 6 groups i.e. [I] normal T4 and T3 [II] increased T4 and T3 [III] decreased T4 and T3 [IV] normal T4 and increased T3 [V] decreased T4 and normal T3 and [VI] normal T4 decreased T3. Untreated patients with Graves’ disease showed I, II, IV, treated patients I, II, III, IV, V, hyperfunctioning nodular goiter I, II, IV, hypothalamic-pituitary tumors I, III, V, TBG deficiency III, pregnancy I, II, hydatidiform mole or choriancarcinoma I, II, IV, and anorexia nervosa VI. There was a good correlation between serum concentration and urinary excretion of T3 in normal subjects and patients with hyper and hypo-thyroidism. In nephrotic syndrome, however, serum T3 level was low but urinary T3 was normal or increased. The absolute values of T3 concentrations in urine (or even in serum) were not
identical when different batches of anti T₃ serum were used. Heterogeneity of the anti T₃ serum which reacts with free T₃, conjugated T₃ or thyroid hormone metabolites in urine (or serum) may cause the different results of T₃ RIA.

Studies on ¹³¹I-Thyroxine Binding Protein Using Single Radial Immunodiffusion and Ouchterlony Method

S. NAKAGAWA

The Third Department of Internal Medicine, Kumamoto University. Medical School.

In 1967, I reported the first familial thyroxine-binding globulin (TBG) deficiency in Japan. The evidence of TBG deficiency is based on the defect of the distribution of radioactivity due to ¹³¹I-thyroxine in inter-globulin region by electrophoresis of the serum and ¹³¹I-thyroxine mixture. Recently, I have an opportunity for studying with anti-TBG rabbit serum (Behringwerke) for purpose to clarify the nature of TBG protein fraction in TBG deficient serum more exactly. Two different immunological methods are used, i.e. single radial immunodiffusion in antigen-contained gel layer and Ouchterlony method combined with radioautography. In the former procedure, the sample sera (0.1 or 0.2ml) are mixed with ¹³¹I-thyroxine (20μCi, 55 μg/dl of serum) and thereafter 7.0ml of 1.2% agarose solution are poured into the mixture. After making the agar plate, 12 or 27 wells for antisera application are punched out with cutter.

As the result of the former method, the radioautogram showed the distribution of radioactivity around some wells into which are applied anti-seres to TBG, prealbumin, β-lipoprotein and hemopexin, corresponding to the protein precipitation rings respectively. I emphasize the probability of hemopexin to be one fraction of the thyroxine-binding proteins besides previously identified.

From the second part of these studies, I draw the conclusion that the TBG protein itself is defect in the sera of the TBG deficient patients instead of the disturbance of binding activity of TBG to ¹³¹I-thyroxine, because there is the precipitation line between normal serum and anti-TBG serum, while the line between TBG deficient sera and anti-TBG serum can not be detectable.

Activities of Thyroid Stimulator in the Fractions from the Serum of Graves' Disease Eluted Through the Acid Sephadex Column

K. ABE, K. MATSUURA and Y. HIRATA

The First Department of Internal Medicine, Tottori University School of Medicine, Yonago

In the present paper, activities of thyroid stimulator in the fractions from the serum of