twenty-four hour's was measured at one time without homogenization and this measurment was continued for one week in every volunteer. The mean value and standard deviation about their 56 samples were 0.39 ± 0.82 ml. (range: -0.72-2.19 ml.) by the well type counter and 0.38 ± 0.48 ml. (0.01-1.01 ml.) by the universal gamma counter. When one milliliter of 51 Cr labeled blood was measured by our method, the error was 19.4% of the exact value by the well type counter and 3.8% by the universal gamma counter. Therefore, without homogenization, 0.5 ml of blood in feces by the universal gamma counter and 2.0 ml by the well type counter were counted with

statistical counting accuracy of $\pm 10\%$.

Secondly, the results obtained by ⁵¹Cr-method were compared with that of the ordinary chemical tests for occult blood in the feces. The positive cases examined by ⁵¹Cr-method were all positive when they were examined by three kinds of the chemical tests. The appearance rate of positive reaction by chemical tests in the negative cases by ⁵¹Cr-method was 16.8% by guaiac, 31.4% by pyramidon and 52.9% by orthtolidin method. It was proved by ⁵¹Cr-method that the guaiactest, so called unsensible reaction, is the most reliable in three chemical tests for occult blood.

RI Production by IPCR (RIKEN) Ciclotron for Medical Use

T. KARASAWA, T. NOZAKI, A. SHIMAMURA and S. OKANO

Institute of Physical and Chemical Research

T. ABURAI

Radio Isotope School (JAERI)

M. AKIBA

Hirosaki University, Hirosaki

Methods for the preparation ¹⁸F and ⁵²Fe are described. An oxgen gas stream is bombarded by 15 MeV ³He for the production of ¹⁸F mainly by the ¹⁶O (³He++, p) ¹⁸F reaction. The ¹⁸F formed is absorbed from the stream by qualtz wool thinly covered with NaOH. The absorption efficiency is 60 to 80% at present. Qualtz wool without treatment or covered with Na₂CO₃ or NaCl caught the ¹⁸F with a poorer efficiency. Usually, about 1 mCi for 5 minits bombardment of ¹⁸F is thus obtained.

Natural chromium electroplated on a copper block is bombarded by ³He above 40 MeV for the production of ⁵²Fe mainly by the ⁵²Cr (³He++, 3n) ⁵²Fe reaction. The bombarded target is transferred to a remote-operation cell' and dissolved in HCl. The ⁵²Fe is extracted by isopropyl ether or methylisobutyl ketone and then back-extracted into water. It takes about an hour for the chemical process and the practical yield of the separated ⁵²Fe is about 1 mCi for one hour bombardment.

Procedures for the production of ⁶⁷Ga, ¹¹¹In and ²⁸Mg are now being developed. Nuclear reaction and incident particle are following;

 $^{67}\rm{Zn}$ (d, 2n) $^{67}\rm{Ga}$ with deuteron above 20 MeV $^{109}\rm{Ag}$ (a, 2n) $^{111}\rm{In}$ with $\alpha\text{-particle}$ 40 MeV $^{27}\rm{Al}$ (t, 2p) $^{28}\rm{Mg}$ with triton 25 MeV

IPCR cyclotron is the first cyclotron accerelating triton in the world.