Studies on Radiopharmaceuticals
—Synthesis of New Renoscaning Agents and Their Evaluation—

A. TANAKA and G. URUKUBO

Department of Radiochemistry, National Institute of Hygienic Sciences

M. MIKI, T. MACHIDA and T. MINAMI

Department of Urology, The Jikei University School of Medicine, Tokyo

K. TOJYO

Medical School of Ground Self Defense Forces

An attempt has been made to produce a new renoscaning agent which is faster excretion rate, lesser radiation exposure and cheaper cost than those of chloromerodrin. An agent, 1-(4-iodophenyl)-2-([3-(chloromercuri)-2-methoxypropyl] urea (abbrev.: IPCM) labeled with 125I was prepared for the first time in four steps with 4-iodoaniline labeled with 125I as a starting material. The kidney-affinity of the synthetic compound was examined by using male wistar rats. IPCM labeled with 125I was given intravenously to the animals at a dose of 2.5 mg/kg (specific activity: 8.6 μCi/mg).

The distribution of 125I in the organs at various intervals after dosing was calculated as a ratio to the concentration of muscle. The average ratio of kidney to muscle at different times was as follows; 43, 80, 104, 153, 200, 101 and 185 at 0.5, 1, 2, 3, 6, 12 and 24 hours, respectively. The kidney accumulated more 125I than any other organs. The liver deposited less 125I than the kidney, but much more than any of the other organs. When the whole body retention between chloromerodrin and IPCM labeled with 203Hg was compared, it was found to be similar biphasic excretion curves for the two compounds. The rate of IPCM’s excretion via the urine and feces were nearly the same. Some problems for the clinical application of IPCM were discussed in take account of the use of 125I in future.

Uptake of Various Labeled Compounds into the Tumor Tissue

A. ANDO

Radiation Technician School Affiliated with Kanazawa University, Kanazawa

K. HISADA

Department of Nuclear Medicine, School of Medicine, Kanazawa University, Kanazawa

Thirty-six labeled compounds were prepared and their affinity for the malignant tumor were examined by using the rats transplanted with Yoshida Sarcoma subcutaneously.

Of these, relatively high uptake into tumor tissue was observed in ten compounds of 131I-fibrinogen, 67Ga-citrate, 114In-chloride, 67Ga-nitrate, 203Hg-acetate, 114In-citrate, 46Sc-citrate, 131I-albumin, 46Sc-chloride and 206Bi-acetate. 131I-fibrinogen and 131I-albumin are protein. Hg and Bi are the elements of the sixth period in a periodic table and these elements have strong protein binding capacity. Ga, In and Sc are the elements of group...