hours, but in the promyelocytes, it once increased and decreased soon thereafter.
These phenomena are accounted for with difficulty, but may possibly be related to the characteristics of proliferation and differentiation of the cells of CML.

RNA Metabolism of Human Leukemic Leukocytes

H. Sawada, Y. Tanabe, A. Kano, S. Shirakawa,
T. Nakamura and G. Wakisaka
Kyoto University, Department of Medicine

In the study presented here, we demonstrate that, when human acute leukemic leukocytes were incubated by shaking at 37°C for a short time with 32P orthophosphate and 0.2 mM each of four common nucleosides and subsequently were treated with water-saturated phenol at cold, rapidly labeled RNA fraction could be separated on the methylated albumin column.

The extraction medium consists of 0.14 M NaCl 0.02 M tris-buffer PH 7.8 0.5 mM EDTA with 0.5% SDS. The total nucleic acids resolved by the column into 4 components: acid soluble fraction, s-RNA, DNA, and r-RNA.

A chromatogram of the 60 min. labeled material obtained from a ALL patient showed incorporation of 32P into P₁ and P₂. P₁ was a relatively small peak between DNA and r-RNA. P₂ was a high peak which was eluted later than r-RNA.

In a chromatogram of the 120 min. labeled material obtained from the same patient, both P₁ and P₂ peaks were still seen, but P₂ shifted toward the peak of r-RNA. The similar results were obtained in the patients with AML and monocytic leukemia.

These findings indicate that RNAs most actively synthesized in acute leukemic cells are high molecular weight RNAs distinct from s-RNA and r-RNA (P₂ and probably P₁). These RNAs are so called rapidly labeled RNAs and belong to nuclear RNAs.

Life Span of the Leukocytes Labelled with Diisopropylfluorophosphate (DF32P)

T. Uchida, M. Sato, Y. Takahashi, A. Shirakawa, S. Kariyone,
and G. Wakisaka

The First Division of Internal Medicine, Faculty of Medicine, Kyoto University, Kyoto

The life span of the leukocytes was measured by a method which leukocytes were labelled with radioactive diisopropylfluorophosphate (DF32P) or radioactive chromium (51CrO₄) in vivo or in vitro.

In vivo labelling method; DF32P (100-200 μCi, 0.5-1.0 mg, and 20 ml of saline were injected intravenously for this study.

In vitro labelling method; 100-200 ml of blood was withdrawn from the subject. DF32P of the same doses or Na51CrO₄ (300-400 μCi was added and the blood was remained at room temperature for one hour. Ten ml of the blood was obtained for a measurement of blood volume, white blood cell count, it's differential count and specific activity of the leukocytes in syringe. The remainder of the blood was injected intravenously, after adding 100 mg of ascorbic acid. Samples of the venous blood were withdrawn in determined interval. Leukocytes of each sample were separated by dextran sedimentation techniques, followed by 0.83 per cent NH₄Cl hemolysis or hypotonic lysis.

In DF32P labelling method, the radioactivity was measured with gas-flow counter and in 51Cr labelling method, it was measured with well-type scintillation counter. After count-