Preparation of ¹³¹I and ¹²⁵I—Labelled AA

H. OGAWA and H. KUROSAKI

Daiichi Pure Chemical Company

H. UEDA, M. IIO, H. YAMADA, K. KITANI and H. KAMEDA

Faculty of Medicine, University of Tokyo, Tokyo

There were some reports on the method for preparing aggregated albumin-¹³¹I, but they were not always sufficient in the viewpoints of reproducibility.

We have researched the reproducible method for preparing AA-¹³¹I and AA-¹²⁵I under many different conditions, for example, under various concentrations of albumin solution, temperatures, times for heating, methods for stirring, volumes of albumin solution, methods for labelling albumin with ¹³¹I and so on.

The following method brought a good result.

- (1) Dilute the 25% human serum albumin for injection to 3% solution.
- (2) Adjust the pH of 3% albumin solution

to 10 with 0.2N-NaOH.

- (3) Stir the solution in the water bath at 83°C for 20 minutes and then cool to room temperature.
- (4) Adjust the pH of albumin solution to 5.5 with 0.2N-HCl
- (5) Centrifuge the solution and wash the precipitate twice with distilled water.
- (6) Disolve the precipitate with 0.1N-NaHCO₃ solution and filter it with milipore filter stock solution.
- (7) Label a part of stock solution with ¹³¹ICl prepared from Na¹³¹I and obtain AA-¹³¹I.

 $AA^{-125}I$ is also obtained by the same method.

Clinical Applications of ¹⁹⁷Hg (especially on the contamination of ²⁰³Hg)

H. UEDA, S. KAIHARA and M. IIO

Faculty of Medicine, University of Tokyo, Tokyo

S. KATO, H. TAKINO and K. KURATA

Dainabboto Radioisotope Laboratories

²⁰³Hg has been widely used in Japan as radioisotope of mercury, due to its long shelf-life. But recently ¹⁹⁷Hg is interested, because it has low gamma energy of 77 Kev, and radiation dose to the kidney is small.

But the main problem for the application of this nuclide in Japan is that $^{203}\mathrm{Hg}$ is contained in it and its relative amount is increasing with elapse of time. For instance, suppose the ratio of $^{203}\mathrm{Hg}/^{197}\mathrm{Hg}$ is 0.06 on the first day, then its ratio becomes 0.77 on the 13th day.

One of the method to decrease the contamination of ²⁰³Hg in ¹⁹⁷Hg is to use enriched target of ¹⁹⁶Hg on the production of

 $^{197}{\rm Hg}$ in the reactor. If 4% enriched target is used, the amount of $^{203}{\rm Hg}$ can be reduced sufficiently.

At present the amount of ²⁰³Hg in ¹⁹⁷Hg in the preparations at the time of import is a few percent. But it is getting improved. So ¹⁹⁷Hg will take place of ²⁰³Hg in future even in Japan.

In our department we are applying this nuclide for the scanning of the kidney (197Hg Neohydrine), scanning of spleen (197Hg M.H.P.) and also for the determination of the position of the kidney before taking renogram by ¹³¹I Hippuran.