Synthesis and preliminary evaluation of $[^{11}\text{C}]$hexanoate as a PET tracer of fatty acid metabolism

Kiichi Ishiwata,* Kenji Ishi,* Koji Oiwawa,** Toru Sasaki,* Hinako Toyama,* Shin-ichi Ishii,* Tadashi Nozaki*** and Michio Sendai*

*Positron Medical Center, Tokyo Metropolitan Institute of Gerontology
**Faculty of Hygienic Sciences, Kitasato University

The potential of $[^{11}\text{C}]$hexanoate (^{11}C-HA) as a radiopharmaceutical assessing fatty acid metabolism of the myocardium and brain tissues by PET studies was evaluated. ^{11}C-HA was synthesized by the Grignard reaction of pentylmagnesium bromide and $^{14}\text{CO}_2$. ^{11}C-HA, $[^{1-}\text{H}]$acetate and $[^{1-}\text{H}]$deoxyglucose were simultaneously injected i.v. into mice, and the tissue distribution of the three radionuclides was measured. In the heart, high uptake and rapid clearance of ^{11}C and ^3H was found. The brain uptake of ^{11}C was twice as high as that of ^3H, and both ^{11}C and ^3H decreased slowly compared to the heart. The level of ^3H increased with time in both the heart and brain. In fasting conditions, the uptake of ^{11}C by the heart was enhanced and the level of ^3H decreased with time. The brain uptake of ^{11}C and ^3H was also enhanced. The fasting conditions did not affect the distribution of ^3H. The radiation absorbed dose of ^{11}C-HA was also estimated.

Key words: $[^{11}\text{C}]$hexanoate, heart, brain, oxidation, PET