Noninvasive identification of anthracycline cardiotoxicity: Comparison of 123I-MIBG and 125I-BMIPP imaging

Yasuchika Takeishi, Hisayasu Suekawa, Tadamie Sakurai, Haruo Satoo, Shozo Nishimura, Taizoishi Shiru, Yusuhiko Sasaki and Hitotsubi Tomoki

Division of Cardiology, Hematology and Radiology, Ishinomaki Red Cross Hospital
First Department of Internal Medicine, Yamagata University School of Medicine

To test the feasibility of myocardial 123I-MIBG and 125I-BMIPP imaging for the early detection of anthracycline cardiotoxicity, 13 patients who had received anthracycline antinecancer chemotherapeutic agents were studied. Two-dimensional echocardiography and myocardial imaging with both 123I-MIBG and 125I-BMIPP were performed in 13 patients treated with anthracycline (group A) and 10 normal control subjects (group C). Anterior myocardial images were obtained 15 minutes and 3 hours after the injection of isotopes. The heart-to-mediastinum ratio (H/M ratio) was used to quantify cardiac 123I-MIBG and 125I-BMIPP uptake. The left ventricular shortening fraction (%SF) and the ratio of peak mitral flow velocity in early diastole to that at the time of atrial systole (E/A ratio) were measured by echocardiography. The H/M ratio of 123I-MIBG was lower in group A than in group C (1.5 ± 0.2 vs. 1.9 ± 0.2, p < 0.01). The patients in group A had faster clearance of 123I-MIBG from the myocardium than those in group C (27 ± 10% vs. 22 ± 4%, p < 0.05). However, the H/M ratio and clearance of 125I-BMIPP were similar between the two groups (H/M ratio: 2.1 ± 0.2 vs. 2.0 ± 0.2, clearance: 24 ± 6% vs. 26 ± 6%). The %SF (37 ± 8% vs. 36 ± 7%) and E/A ratio (1.4 ± 0.4 vs. 1.6 ± 0.3) were comparable in groups A and C.

The present findings indicated that myocardial imaging with 125I-MIBG could detect myocardial damage in patients treated with anthracycline in the early stage when cardiac systolic and diastolic function was still preserved. Early detection of anthracycline cardiotoxicity by 123I-MIBG would reduce the incidence and severity of heart failure.

Key words: 123I-MIBG, 125I-BMIPP, doxorubicin cardiotoxicity