A patient with cardiac amyloidosis presenting a rapid increase in technetium-99m-hydroxymethylene diphosphonate accumulation

Takama KOBAYASHI, Michihito SEKIYA, Yasushi FUJWARA, Takumi SUMIMOTO, Hiroshi MATSUOKA, Mareomi HAMADA and Kunio HIWADA

Second Department of Internal Medicine, Ehime University School of Medicine, Ehime, Japan

We assessed the changes in cardiac condition in a patient with cardiac amyloidosis, by means of dual nuclei single photon emission computed tomographic (SPECT) images with technetium-99m-hydroxymethylene diphosphonate (99mTc-HMDP) and thallium-201 (201Tl). Dual SPECT showed a marked increase in myocardial 99mTc-HMDP accumulation along with deterioration of symptoms and signs, while 201Tl scintigraphy remained almost unchanged.

Key words: cardiac amyloidosis, scintigraphy, 99mTc-HMDP, 201Tl

INTRODUCTION

The cardiac manifestations in primary amyloidosis vary depending on the area and the severity of amyloid deposition into the heart. Echocardiography is usually used to diagnose cardiac amyloidosis noninvasively, but in patients with advanced cardiac amyloidosis there is no significant echocardiographic change during the follow-up study. Recently scintigraphy with technetium-99m-labeled phosphates has been used for the diagnosis of cardiac amyloidosis. However, there are few reports on the progression of cardiac amyloidosis detected by technetium-99m-labeled phosphates scintigraphy.

In this report, we present a patient with primary amyloidosis involving the heart. Myocardial accumulation of technetium-99m-hydroxymethylene diphosphonate (99mTc-HMDP) increased as symptoms and signs deteriorated during a 3 month follow-up, while thallium-201 (201Tl) scintigraphic and echocardiographic findings remained unchanged in this period.

CASE REPORT

A 69-year-old man was admitted to our hospital because of dyspnea. One year before admission, he noticed edema in the lower extremities. Then shortness of breath on exertion appeared and rapidly deteriorated. On admission he was in New York Heart Association functional stage III. Biopsy specimens from the duodenal mucosa revealed abundant amyloid deposits, and Congo red staining after treatment of amyloid deposits with potassium permanganate suggested the amyloidosis related to AL protein. There were no relatives known to be affected with amyloidosis. He had not experienced myocardial infarction. Physical examination revealed a blood pressure of 80/60 mmHg and a heart rate of 85 beats/minute.

The chest X-ray film showed enlargement of the heart (cardiothoracic ratio 63%) and bilateral pleural effusion. A routine electrocardiogram showed right bundle branch block, poor R progression in precordial leads, and low QRS-voltages. The echocardiogram showed left ventricular hypertrophy (interventricular septal thickness, 18 mm; posterior wall thickness, 12 mm) with highly refractile myocardial echoes, so-called granular sparkling appearance. The left ventricular wall motion was reduced (fractional shortening 18%). Echocardiographic findings remained unchanged during 3 months' hospitalization (Fig. 1).
Dual single photon emission computed tomographic (SPECT) images of 99mTc-HMDP and 201Tl were examined on admission and then 3 months later. Three hours after the administration of 740 MBq of 99mTc-HMDP, 111 MBq of 201Tl was administered, and the scintillation camera (GE Starcam 400 AC/T), equipped with a low-energy general purpose collimator, was rotated for 35 seconds in each projection of 32 slices over 360° circulation orbits. Energy discrimination was provided by a 20% window centered on the 140-keV photopeak of 99mTc-HMDP and 72-keV photopeak of 201Tl. Images of 1.33 magnification were recorded at a digital resolution of 64×64 matrices with a dedicated computed system. 201Tl scintigraphy on admission revealed defects in the posterior region as shown in Fig. 2-A, but 99mTc-HMDP scintigraphy showed the intense accumulation in posterior and septal regions seen in Fig. 2-B. Dyspnea on exertion progressively deteriorated in spite of treatment with a cardiac inotropic agent and increases in doses of diuretics. After 3 months' hospitalization, dual SPECT showed a marked increase in the accumulation of 99mTc-HMDP in the septal region and a new accumulation in the lateral region, while 201Tl scintigraphy remained almost unchanged (Fig. 3). Just after three months imaging, he suddenly died. His autopsy revealed amyloid deposition in the accumulated area of 99mTc-HMDP.

DISCUSSION

We report a patient with cardiac amyloidosis whose cardiac involvement was assessed by SPECT with 99mTc-HMDP and 201Tl. Since the first report of the cardiac accumulation of 99mTc-diphosphonate in patients with cardiac amyloidosis by Kula et al., scintigraphy with 99mTc-labeled phosphates has been used as a noninvasive procedure for the diagnosis of cardiac amyloidosis. However, there are some reports indicating that this technique is not useful because of low incidence of positive scan. The exact mechanism of myocardial accumulation of 99mTc-labeled phosphates in amyloidosis still remains unclear. It possibly relates to the increased calcium concentration in tissues infiltrated with amyloid, as shown by the study in which there was a strong relation between tissue uptake of 99mTc-labeled phosphate and calcium accumulation. 99mTc-HMDP showed a significantly higher uptake in infarct myocardium than 99mTc-methylene diphosphonate and approximate equality with 99mTc-phyrophosphate. We used 99mTc-HMDP to evaluate the severity of cardiac involvement. On admission, 99mTc-HMDP scintigraphy showed an uneven positive accumulation, while 201Tl scintigraphy showed a regional defect. The region of accumulation of 99mTc-HMDP almost exactly corresponded to the defect seen in the 201Tl image, and 3 months after the initial scintigraphic study, the accumulation of 99mTc-HMDP markedly increased. Hongo et al. reported that myocardial accumulation of 99mTc-pyrophosphate was detected in cardiac amyloidosis, while no cardiac perfusion defect of 201Tl was observed. They also reported cases with familial amyloidosis that no significant changes in the area and the degree of 99mTc-pyrophosphate accumulation in cardiac amyloidosis were observed at least in a 3-year follow-up period. Takezaki et al. reported that 99mTc-pyrophosphate accumulation and 201Tl defects were detected in cardiac amyloidosis, and the accumulation of 99mTc-pyrophosphate was observed in the same regions as the perfusion defect seen with 201Tl, which is similar to our case. They suggested that 201Tl defect might reflect the myocyte damage due to amyloid deposits in connective tissue of the myocardium. Three months after the initial SPECT, the extension and increase in 99mTc-HMDP accumulation were observed, while the 201Tl defect remained unchanged. We supposed that amyloid deposits increase, as indicated by the increase in 99mTc-HMDP accumulation, followed by myocardial cells degeneration, resulting in the subsequent appearance of the 201Tl defect.
Fig. 2 Short axis image of thallium-201 (201TI) myocardial SPECT on admission showed a defect in septal and posterior wall regions (A) and a accumulation of technetium-99m hydroxymethylene diphosphonate (99mTc-HMDP) was observed (B) in these regions where 201TI defect existed.

Fig. 3 After 3 months of the admission, short axis image of 201TI (A) remained unchanged, but that of 99mTc-HMDP (B) showed a marked increase of uptake compared to that on admission.
Hongo et al.13 reported that the incidence and the
degree of abnormalities in echocardiography in
patients with amyloidosis were correlated with the
duration of the illness. In our case, unlike the
scintigraphic data, echocardiographic findings were
unchanged during the 3-month follow-up period.
Thus echocardiography might not be useful for
defecting the progression of advanced cardiac
amyloidosis in a short term.4

The combination of 201TI and 99mTc-HMDP
SPECT is of value in assessing the degree and
distribution of the infiltrative process of amyloidosis
in cardiac tissue. Serial examinations would permit
the estimation of the progression of the disease, and
they might aid in evaluating the efficacy of the
treatment regimen for amyloidosis.

REFERENCES

1. Kyle RA, Greipp PR: Amyloidosis (AL): Clinical
and laboratory features in 229 cases. \textit{Mayo Clin
Proc} 58: 665–683, 1983
M-mode and two-dimensional echocardiographic
features in cardiac amyloidosis. \textit{Circulation} 63: 188–
196, 1981
amyloidosis: Combined use of two-dimensional
echocardiography and electrocardiography in non-
invasive screening before biopsy. \textit{Clin Cardiol} 8:
511–518, 1985
Doppler echocardiographic follow-up of left ventri-
cular diastolic function in cardiac amyloidosis. \textit{J Am
Coll Cardiol} 16: 1135–1141, 1990
5. Kula RW, Engel WK, Line BR: Scanning for soft-
involvement in systemic amyloidosis: Myocardial
scintigraphic evaluation. \textit{J Cardiogr} 15: 163–180,
1985 (in Japanese)
fication of amyloid heart disease by technetium-99m-
pyrophosphate scintigraphy: A study with familial
amyloid polyneuropathy. \textit{Am Heart J} 113: 654–662,
1987
systemic amyloidosis. \textit{Nucl Med Commun} 9: 879–890,
1988
99m-pyrophosphate scintigraphy valuable in the
diagnosis of cardiac amyloidosis? \textit{Int J Card Imag} 5:
227–231, 1990
physiologic considerations and clinicopathological
 correlates of technetium-99m stannous pyrophos-
phate by myocardial scintigraphy. \textit{Semin Nucl Med}
10: 54–69, 1980
HMDP (Hydroxymethylene Diphosphonate): A
radiopharmaceutical for skeletal and acute myo-
cardial infarct imaging. II. Comparison of Te-99m
hydroxymethylene diphosphonate (HMDP) with other
12. Takezaki M, Ishida Y, Morozumi T, et al: Non-
invasive diagnosis of cardiac involvement by tech-
etium-99m-pyrophosphate (Te-99m PYP) myocardial
scintigraphy in 2 cases with familial amyloid
polyneuropathy and 1 case with secondary amy-
13. Hongo M, Ikeda S: Echocardiographic assessment
of the evolution of amyloid heart disease: A study
with familial amyloid polyneuropathy. \textit{Circulation}
73: 249–256, 1986