Methodological aspects for free hormone estimation using microencapsulated antibody method—The effects of hormone binding protein on permeability of microcapsule membrane

Takuma Hashimoto*, Kaichiro Ishibashi** and Fujitsugu Matsubara*

*Department of Laboratory Medicine, Kanazawa University School of Medicine, Kanazawa, 920, Japan
**Eiken Immunochemical Laboratories Tokyo 114, Japan

The effect of T4 non-carrying thyroxine binding globulin (TBG) on free thyroxine determination using the microencapsulated antibody method was studied, to investigate the precise reliability of the membrane and to find possible applications for estimating other free steroid hormones. When increased amounts of purified TBG were added to a test tube containing microcapsule suspension, it affected the accuracy of the results. We found that with higher amounts, 125I-T4 leaked through the membrane into the medium, thereby giving a falsely increased free T4 result. Our finding indicates that further improvements in the microcapsule membrane are necessary; or alternatively, it may also be possible to balance the binding affinity inside and outside the membrane by adding a suitable amount of carrier protein, to the contents of the capsule, so that both successful FT4 determination and other free steroid hormone assays may be undertaken.

Key words: Free thyroxine, Microencapsulated antibody method, Free hormones

INTRODUCTION

THE ESTIMATION of free hormone levels in the blood, when the hormone has its binding protein, is remarkably accurate when compared to the total hormone estimation. In fact, free thyroxine (FT4) determination is now a routine procedure for the evaluation of thyroid function.1–4 In a report by Chopra and Tulchinsky5 on the pathogenesis of gynecomastia in hyperthyroid men, the estimation of free estrogen and free testosterone was the most important tool in clinical investigation. If a simple and appropriate method, similar to FT4 determination in the thyroid disease, were available, it would be very beneficial in determining other endocrine disorders caused by free hormone imbalance.

Buehler6 has reported using the microencapsulated antibody method in determining FT4 with radioimmunoassay (RIA) and showed it to be applicable for assaying free cortisol and free testosterone. This unique microencapsulated antibody method seemed to be attractive, practicable and promising for several free hormone estimations, but it did not become a commercial success. In order to make further improvements in technology, at first we considered it important to examine the reliability of the microcapsule membrane.

In this paper we describe our assessment of some methodological problems in the microencapsulated antibody method used in the FT4 RIA kit, which will have important significance when a successful assay method for free testosterone or free cortisol is developed in the future.

MATERIALS AND METHODS

Experimental procedures:

Preparation of TBG
Highly purified TBG was prepared from pooled human serum by affinity chromatography as previously described.7 The technique employed was similar to the method described by Pensky and Marshall.8 125I thyroxine was added to the purified TBG and the mixture was subjected to disc elec tro-
phoresis. A single protein band coincided with the radioactivity. The TBG did not contain any T₄ after purification. The purified TBG zero serum contains a concentration of 4.0 g/dl albumin, 10.1 mg/dl pre-albumin and 0.54 mmol/l of nonesterified fatty acids (NEFA).

Assay procedures
The assay for FT₄ using the microcapsule method (Liquisol FT₄ kit Damon Diagnostics, USA) was performed in accordance with the manufacturer's instructions. Briefly, twenty-five μl of saline or purified TBG (0, 13, 52 μg/ml) was added to test tubes containing 500 μl of microcapsule suspension which contained anti-T₄ combined with ¹²₅I-T₄. Twenty-five μl of standard solution (0, 0.15, 0.38, 1.10, 2.00, 3.10 and 5.00 ng/dl) was pipetted into each tube and the tubes were vortexed for 4 seconds. After the tubes were incubated in a water bath at 37°C for one hour, they were vortexed for 4 seconds, and then incubated for an additional one hour. After that, one ml of washing solution (polyethyleneimine) was added to each tube followed by 4 seconds vortex. The tubes were incubated at room temperature for 20 minutes, and subsequently centrifuged at 1,400 g for 10 minutes. After decanting the supernatant, the sedimenting microcapsules were counted in a gamma counter for 1 minute. The intra- and inter-assay coefficients of variation were 7.2-8.5% between 0.40 and 4.50 ng/dl and 14.7-15.9% between 1.00 and 3.00 ng/dl respectively.

FT₄ was also measured with an Amerlex kit (Amersham, U.K.); T₃, T₄, TSH, thyroglobulin (TG), TBG with an EIKEN kit (EIKEN ICL, Japan), and T₃ RSU with a Dainabot kit (Dainabot Co. Japan). The accuracy of these kits and the analytical procedures for measurement of these hormones have previously been described in detail.9,10 All samples were measured simultaneously in order to avoid inter-assay variations.

Patient materials
Seventeen patients receiving T₃ replacement therapy after total thyroidectomy (T₄ less than 1 μg/dl) were studied. Sera were aliquoted and stored at -20°C until the assay was undertaken.

Statistical Analysis
The results were expressed as the mean±standard deviation (SD). The significance of differences between mean values was evaluated by the paired t-test.

RESULTS AND DISCUSSION

Figure 1. illustrates the effect of varying doses of purified TBG from 0 to 52 μg/ml on a Liquisol FT₄ kit. The results show that the FT₄ values determined by this method are strongly influenced by the concentration of TBG in the samples: when the added purified TBG concentration outside of the capsules was high, ¹²₅I-T₄ was extracted from the microcapsules. However, the leakage curve of the encapsulated TBG solution might be mostly due to the fact that the TBG solution contains human albumin and pre-albumin, which affect the leakage of the encapsulated ¹²₅I-T₄.¹¹ Each standard solution in the Liquisol FT₄ kit contains approximately 3.0 g/dl of human albumin and 17.8 μg/dl of TBG. The reason for the distinctive and exceptional decline in Liquisol FT₄ zero serum is inexplicable. Whatever the reason, the difference between the results in the saline and the purified zero TBG solution indicate, that saline should not be used for dilution.

As we¹⁰ and Melmed et al.¹² reported previously, the values obtained with the Liquisol kit were signi-
Fig. 2 A schematic diagram of the effect of uncomplexed TBG on FT₄ determination (Liquisol FT₄ kit).

Table 1 Concentrations of circulating thyroid hormones, TBG and TSH in patients with T₃ treatment after total thyroidectomy

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age & Sex</th>
<th>T₃ ng/dl</th>
<th>T₄ µg/dl</th>
<th>F-T₄ Liquisol kit ng/dl</th>
<th>F-T₄ Amerlex kit ng/dl</th>
<th>TBG µg/ml</th>
<th>TSH µU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64 M</td>
<td>283</td>
<td><1</td>
<td>0.46</td>
<td>n.d.</td>
<td>24.3</td>
<td><0.1</td>
</tr>
<tr>
<td>2</td>
<td>32 M</td>
<td>192</td>
<td><1</td>
<td>0.24</td>
<td>n.d.</td>
<td>20.7</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td>46 M</td>
<td>276</td>
<td><1</td>
<td>0.25</td>
<td>n.d.</td>
<td>25.4</td>
<td><0.1</td>
</tr>
<tr>
<td>4</td>
<td>48 M</td>
<td>284</td>
<td><1</td>
<td>0.23</td>
<td>n.d.</td>
<td>18.8</td>
<td><0.1</td>
</tr>
<tr>
<td>5</td>
<td>51 M</td>
<td>230</td>
<td><1</td>
<td>0.30</td>
<td>n.d.</td>
<td>19.0</td>
<td>1.10</td>
</tr>
<tr>
<td>6</td>
<td>32 M</td>
<td>286</td>
<td><1</td>
<td>0.43</td>
<td>n.d.</td>
<td>17.0</td>
<td><0.1</td>
</tr>
<tr>
<td>7</td>
<td>45 F</td>
<td>218</td>
<td><1</td>
<td>0.27</td>
<td>n.d.</td>
<td>25.5</td>
<td>0.45</td>
</tr>
<tr>
<td>8</td>
<td>49 F</td>
<td>273</td>
<td><1</td>
<td>0.27</td>
<td>n.d.</td>
<td>21.3</td>
<td>0.20</td>
</tr>
<tr>
<td>9</td>
<td>60 F</td>
<td>263</td>
<td><1</td>
<td>0.23</td>
<td>n.d.</td>
<td>20.4</td>
<td>0.18</td>
</tr>
<tr>
<td>10</td>
<td>32 M</td>
<td>308</td>
<td><1</td>
<td>0.27</td>
<td>n.d.</td>
<td>18.7</td>
<td><0.1</td>
</tr>
<tr>
<td>11</td>
<td>25 F</td>
<td>239</td>
<td><1</td>
<td>0.26</td>
<td>n.d.</td>
<td>20.9</td>
<td>0.15</td>
</tr>
<tr>
<td>12</td>
<td>43 F</td>
<td>222</td>
<td><1</td>
<td>0.25</td>
<td>n.d.</td>
<td>20.2</td>
<td>0.82</td>
</tr>
<tr>
<td>13</td>
<td>31 M</td>
<td>215</td>
<td><1</td>
<td>0.23</td>
<td>n.d.</td>
<td>20.0</td>
<td>1.15</td>
</tr>
<tr>
<td>14</td>
<td>28 F</td>
<td>255</td>
<td><1</td>
<td>0.28</td>
<td>n.d.</td>
<td>20.1</td>
<td>1.06</td>
</tr>
<tr>
<td>15</td>
<td>58 F</td>
<td>187</td>
<td><1</td>
<td>0.27</td>
<td>n.d.</td>
<td>21.1</td>
<td>2.50</td>
</tr>
<tr>
<td>16</td>
<td>50 F</td>
<td>260</td>
<td><1</td>
<td>0.30</td>
<td>n.d.</td>
<td>28.4</td>
<td><0.1</td>
</tr>
<tr>
<td>17</td>
<td>30 F</td>
<td>235</td>
<td><1</td>
<td>0.27</td>
<td>n.d.</td>
<td>18.5</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Mean±SD 249±30 <1 0.29±0.06 n.d. 21.2±4.2

Normal values 141±23 6.5±1.4 1.9±0.4 1.2±0.3 21.4±4.3 0.25–6.00

n.d.: not detectable; The sensitivity of the FT₄ Amerlex kit is 0.15 ng/dl.

*Note: In these patients, TBG is saturated only by T₃, and the “excess” (non T₄ bound) TBG causes the leakage of the encapsulated ¹²⁵I-T₄ through the microcapsule membrane, thereby giving a falsely increased FT₄ result with the Liquisol kit.

significantly higher than those expected in patients with primary hypothyroidism. In this study, as shown in Table 1, this kit gave erroneously higher concentrations, in contrast with the Amerlex kit, in patients undergoing T₃ treatment after total thyroidectomy.

Previously, the microencapsulated antibody method used in FT₄ RIA was reported to be applicable for the assay of free fractions of cortisol or testosterone by Buehler. However, plasma free cortisol or testosterone determined by this principle could also be affected by the binding protein for each hormone in a similar manner. It has been reported by Key and Moore and Slats et al. that sex-hormone binding globulin (SHBG) has interfered with estradiol and testosterone estimation in a non-extraction RIA method.

Although many investigators have reported various methods for measuring free aldosterone, free corti-
sol,16 free deoxycorticosterone,17 free estrogens,18 and free testosterone,19 the methods for their assays are complicated, time consuming and not practical in clinical use. Despite the methodological problems which are not completely solved yet, the microencapsulated dialysis method appears to have the potential to be a sensitive, flexible and practicable method for the determination of various free hormones. In addition, this method is principally a miniature dialysis system and there is a consensus that free hormones determined by equilibrium dialysis should be a reference standard against which other measurements are compared.20

In conclusion, further improvements of the microcapsule membrane and/or addition of carrier protein to the capsule, to balance the binding affinity inside and outside the membrane, are necessary for the determination of FT\textsubscript{4} and other free steroid hormones. If further improvements in this area of technology are able to be made, we will have an easier and more precise method of estimating all free hormones.

ACKNOWLEDGEMENTS

We are indebted to Dr. Ellen Ingham for encouragement, helpful discussions, and comments. We also thank Miss Misako Yagi and Miss Yasuko Kamei for their excellent secretarial assistance and to Miss Hermione Elliot for her help in English in the preparation of this manuscript. This work was supported in part by the Japan Clinical Pathology Foundation for International Exchange and Clinical Pathology Foundation of Japan.

REFERENCES