Thallium-201 scintigraphy of neuroblastoma: Different results for primary tumors and skeletal lesions

Chio Okuyama, Yo Ushijima, Tomoki Nakamura, Masayuki Kikkawa and Tsunehiko Nishimura

Department of Radiology, Kyoto Prefectural University of Medicine

Thallium-201 scintigraphy was performed in 8 children with neuroblastoma, and uptake by the tumors was evaluated in comparison with the results of \(^{123}\)I-MIBG scintigraphy. No primary tumors or metastatic lymph nodes showed \(^{201}\)TI accumulation, but in 4 cases of bone marrow metastases accompanied by focal cortical invasion, the metastatic lesion was demonstrated more clearly on the early image than on the delayed image. In another case of bone metastases infiltrating cortical bone revealed by \(^{123}\)I-MIBG scintigraphy and biopsy before treatment, \(^{201}\)TI scintigraphy performed after chemotherapy showed abnormal accumulation in the tibia, but the second \(^{123}\)I-MIBG scintigraphy performed 1 week after the \(^{201}\)TI scintigraphy showed no abnormal uptake. \(^{201}\)TI does not appear to have good affinity for neuroblastoma, but it accumulates in metastatic skeletal lesions. A reactive hypermetabolic bone marrow, and/or inflammatory process and peristeal reaction due to the presence of metastatic foci may have induced the \(^{201}\)TI accumulation. It seems that \(^{201}\)TI is not useful for the diagnosis. Nevertheless, the discordance between \(^{201}\)TI uptake in primary tumors and skeletal lesions allows speculation on the mechanism of \(^{201}\)TI accumulation in skeletons.

Key words: \(^{201}\)TI scintigraphy, neuroblastoma, skeletal lesion

INTRODUCTION

NEUROBLASTOMA is a representative solid tumor in infants or children, and it is derived embryonically from the neural crest. It has high malignant potential, but the prognosis varies with cases. There are some neuroblastomas which show spontaneous regression without any treatment in the natural course; on the other hand some cases show very progressive features.\(^1\) Many factors are known as the prognostic factor, and age and clinical stage at diagnosis are thought to be the most significant.\(^2\) But cases of widespread disease do not always have a poor outcome.\(^3\)

Meta-iodobenzylguanidine (MIBG) labeled with I-131 or I-123 is widely used for the diagnosis,\(^4\) staging,\(^5\) and the follow-up of neuroblastoma,\(^6\) and its utility has been demonstrated because of its high sensitivity and specificity. But according to our experience with more than 40 patients of \(^{123}\)I-MIBG scintigraphy (a total of more than 200 studies), there seems no correlation between the avidity of the radiopharmaceutical for the tumor and its malignant potential.

Thallium-201 chloride (\(^{201}\)TI) scintigraphy has recently become widely accepted for imaging malignant tumors, especially for the diagnosis or identification of the pathological type or grade of tumors of the lung, thyroid, bone, soft tissue, and brain.\(^7\)\(^-\)\(^12\)

We performed \(^{201}\)TI scintigraphy in 8 patients with neuroblastoma and discussed the findings retrospectively to evaluate the utility of \(^{201}\)TI from the prognostic viewpoint if possible. Our unexpected but interesting results are discussed.

MATERIALS AND METHODS

\(^{201}\)TI scintigraphy was performed in 8 patients with known
Table 1 Summary of the clinical data

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age</th>
<th>Sex</th>
<th>VMA (µg/mg/Cr)</th>
<th>HVA</th>
<th>Origin</th>
<th>Histology<sup>a</sup></th>
<th>Distant lesion<sup>b</sup></th>
<th>Patient outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>m</td>
<td>17.8</td>
<td>19.8</td>
<td>lt. adrenal</td>
<td>RF</td>
<td>N.D.</td>
<td>free (5 years)</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>m</td>
<td>9.8</td>
<td>11.5</td>
<td>retrospectoreum</td>
<td>RC</td>
<td>N.D.</td>
<td>free (3 years)</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td>m</td>
<td>30.6</td>
<td>32.8</td>
<td>rt. adrenal</td>
<td>RF</td>
<td>N.D.</td>
<td>free (0.5 years)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>f</td>
<td>644</td>
<td>655</td>
<td>lt. adrenal</td>
<td>RF</td>
<td>B, BM</td>
<td>died</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>m</td>
<td>90.2</td>
<td>86.9</td>
<td>lt. adrenal</td>
<td>RF</td>
<td>B, BM</td>
<td>free (3 years)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>f</td>
<td>97.8</td>
<td>180.2</td>
<td>rt. adrenal</td>
<td>GNBpd</td>
<td>B, BM</td>
<td>on chemotherapy</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>f</td>
<td>107</td>
<td>168</td>
<td>rt. adrenal</td>
<td>RF</td>
<td>B, BM</td>
<td>on chemotherapy</td>
</tr>
<tr>
<td>8<sup>*</sup></td>
<td>5</td>
<td>m</td>
<td>9.5</td>
<td>12.3</td>
<td>lt. adrenal (resected)</td>
<td>RF</td>
<td>B</td>
<td>free (3 months)</td>
</tr>
</tbody>
</table>

^a RF: neuroblastoma rosette-fibrillary type, RC: neuroblastoma round cell type, GNBpd: ganglioneuroblastoma poorly differen-
tiated type

^b N.D.: not detected, B: bone metastasis(es), BM: bone marrow metastasis(es)

* The data when the recurrence was discovered

Table 2 Summary of the imaging data

2) Metastatic lesions

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>site</th>
<th>MIBG</th>
<th>HMDP</th>
<th>diagnosis</th>
<th>TI (10 min/4 hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>vertebrae</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>5</td>
<td>pelvis</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>6</td>
<td>skull</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>7</td>
<td>vertebrae</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear*</td>
</tr>
<tr>
<td>8</td>
<td>rt. tibia</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>9</td>
<td>skull</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>10</td>
<td>pelvis</td>
<td>D</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>11</td>
<td>scapula</td>
<td>S</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear*</td>
</tr>
<tr>
<td>12</td>
<td>ribs</td>
<td>S</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>13</td>
<td>both humeri</td>
<td>S</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
<tr>
<td>14</td>
<td>both femora</td>
<td>S</td>
<td>S</td>
<td>BM + B</td>
<td>D/unclear</td>
</tr>
</tbody>
</table>

* The results of lumbar spines are mentioned

or suspected neuroblastoma, aged 0.7–11 years, 5 boys and 3 girls.

Seven patients had been admitted for the first time, and scintigraphy was performed for diagnosis and staging
before treatment. In 3 of them the tumor was localized in
the adrenal gland and no metastasis lesion was detected by
any other examination, including ¹²³I-MIBG scintigra-
phy, bone scan, bone marrow aspiration or biopsy, or abdo-
nominal computed tomography (CT). The other 4 had
bone marrow metastases with partial cortical bone invasion
revealed by ¹²³I-MIBG scintigraphy, bone scan, bone
marrow aspiration, X-ray radiographs, and magnetic reso-
nance imaging (MRI). Biopsy or operative section of the
umor prior to chemotherapy confirmed the diagnosis of
roblastoma in these 7 patients.

The remaining patient (Patient 8) had proven metastat-
ic neuroblastoma in his left tibia that was first detected
3 months after intensive chemotherapy and peripheral
blood stem cell transplantation (PBSCT). ²⁰TI scintigra-
phy was performed after 2 cycles of chemotherapy for
recurrence.

²⁰TI scintigraphy was performed after fasting for more
Fig. 1 Patient 1 MRI T1WI (a) demonstrates a left suprarenal solid mass with 3 cm diameter. ¹²³I-MIBG (b) shows clear accumulation in the mass. But ¹⁹⁷Tl scintigrams (c)-1: early image, (c)-2: delayed image) show no abnormal accumulation in the mass. Arrows show the tumor lesion.

in Tables 1 and 2. Seven preoperative primary tumors, including enlarged lymph nodes, concentrated ¹²³I-MIBG, but not ¹⁹⁷TlCl. In 4 cases ¹²³I-MIBG demonstrated a total of 23 skeletal lesions, and in these cases the bone marrow aspiration or biopsy revealed tumor involvement. Out of the 23 lesions, only 14 were demonstrated by bone scans, and of these 14 lesions 11 were shown to be smaller by bone scan than by ¹²³I-MIBG. The lesions in which only ¹²³I-MIBG accumulated were interpreted as bone marrow metastases, and the lesions with both tracer accumulations were estimated as bone metastases. Of these 23 skeletal lesions, 21 were visualized on ¹⁹⁷Tl early images. Although the ¹⁹⁷Tl intensity was weaker than the intensity of ¹²³I-MIBG accumulation, ¹⁹⁷Tl distribution resembled the ¹²³I-MIBG accumulation (not like the accumulation in bone scintigrams), but they were not seen on the delayed images.

Patient 8 had a biopsy which confirmed recurrent neuroblastoma at the diaphysis of the left tibia. The abnormal ¹²³I-MIBG accumulations in the lesion, which were observed on admission, were no longer seen in the second study performed after 2 cycles of chemotherapy, but ¹⁹⁷Tl accumulated in the lesion despite the absence of MIBG uptake, but it was not retained on the delayed image.

After the ¹⁹⁷Tl studies, patients 1, 2 and 3 underwent resection of the tumor and no additional chemotherapy. Patients 4 and 5 underwent chemotherapy at first, and then a second look operation, and chemotherapy after tumor resection again. Chemotherapy is now being repeated for patients 6 and 7. For patient 8, who had already undergone the chemotherapy, second look operation, and re-chemo-
therapy with PBSCT, another chemotherapy regimen, was performed.

Patients 1, 2, 3 and 4 remain well without any evidence of disease for 5, 3, 0.5 and 3 years without therapy. Patients 5, 6 and 7 had very refractory diseases; patient 5 died after 1.5-years of hospitalization, and patients 6 and 7 are still undergoing intensive chemotherapy. Patient 8 has been free from disease for 4 months since the second PBSCT.

Case Reports
Patient 1
A 2-year-old boy was admitted to the hospital for further examination of increased urinary catecholamine metabolites discovered in a mass-screening examination at 18 months. He was asymptomatic, but abdominal ultrasonography and MRI demonstrated a left suprarenal abnormal mass. I-123-MIBG accumulated in the tumor, but 201-Tl scintigraphy showed no abnormal accumulation (Fig. 1). Preoperative biopsy of the tumor confirmed the diagnosis of neuroblastoma, rosette-fibrillary type.

Fig. 2 Patient 7 CT scans (a) of the skull shows an osteolytic lesion with unclear border in the frontal bone (arrow). Bone scintigrams (b) show abnormal accumulations in the left frontal bone, some spines (Th2, L1), right 6th rib, left sacro-iliac joint, upper part of left acetabulum, and right ischium to acetabulum. Abdominal contrast CT scans (c) show a large right suprarenal mass with a necrotic center (arrow heads). 123I-MIBG SPECT images (d-1: head, d-2: abdomen) show abnormal uptake by the tumors (arrows: skull mass, arrow heads: abdominal mass), and the whole body scans (e) demonstrate diffuse accumulation of the bone marrow (vertebrae, ribs, pelvic bones, proximal long bones of the extremities, and the proximal ends of the distal long bones) as well as the known lesions. 201-Tl early scans (f) demonstrate diffuse bone marrow accumulations like as 123I-MIBG scans. 201-Tl early SPECT (g-1: head, g-2: abdomen) also demonstrate diffuse bone marrow accumulation as well as the skull (left frontal lesion) hot spots (arrows), but show the cold area at the abdominal tumor (arrow heads), while delayed images (h-1: head, h-2: abdomen) could not detect these accumulations.

Patient 7
An 11-year-old girl was admitted with a head mass and a continued low-grade fever lasting over 2 weeks. She had been treated first with antibiotics, because osteomyelitis had been suspected, but her symptoms did not change. CT images of the skull showed focal osteolytic change with mild periosteal reaction in the left frontal bone. On her bone scintigrams, many abnormal accumulations were seen in her vertebrae, ribs, and pelvic bones as well as in the left frontal bone. Physical examination revealed a large abdominal mass, and abdominal CT showed a large tumor occupying the right retroperitoneal suprarenal space. Since urinary vanillylmandelic acid (VMA) and homovanillic acid (HVA) levels were very high, neuroblastoma was suspected. An 123I-MIBG scintigram showed an abnormal hot spot in the head, and ring-like uptake by the abdominal tumor, and diffuse accumulation was seen in bone marrow or the bone of vertebrae, and proximal extremities, which meant that she had progressed neuroblastoma with metastases in diffuse bone marrow and several cortical bones. There was an especially intense hot spot on the parietal bone, which corresponded to the...
initially noticed lesion. The early 201TI scintigram showed no abnormal accumulation by the abdominal tumors, but diffuse bone marrow uptake was seen as in the MIBG scintigram. As to the skull lesion, a hot spot in the diffuse accumulation pattern was seen on the 201TI early images as in the 123I-MIBG images. Although a delayed whole body scan could not be obtained, the alternatively obtained delayed SPECT images of the head and the abdomen demonstrated no abnormal accumulation (Fig. 2).

Bone marrow aspiration from the iliac crest and open biopsy of the abdominal tumor confirmed the diagnosis of neuroblastoma, rosette-fibrillary type.

Patient 8

A 5-year-old boy who had undergone resection of abdominal neuroblastoma and 3 months previously achieved complete remission after intensive chemotherapy and peripheral blood stem cell transplantation (PBSCT), was readmitted for leg pain. An X-ray radiograph showed an osteolytic lesion with obvious cortical disruption and periosteal reaction in the distal metaphysis of the left tibia. 123I-MIBG accumulated at the same site, and the biopsy confirmed the diagnosis of the metastatic neuroblastoma. 201TI scintigraphy was performed after 2 cycles of chemotherapy, and demonstrated abnormal uptake in the lesion on the early image and reduced activity that was indistinguishable from the background on the delayed image. The second MIBG scintigraphy, performed one week after the 201TI scintigraphy, demonstrated no abnormal distribution, even though there had been no treatment between the two studies (Fig. 3). Although periosteal reaction continued on the X-ray radiographs, no tumor cell was detected by bone marrow aspiration.

DISCUSSION

201TI was first used for myocardial perfusion imaging in the early 1970s. It behaves like potassium, and it is thought to be transported through a similar Na-K ATPase pump, Ca ion channel, and co-transport system, instead of potassium ion. It now has another significant role as a positive indicator for tumors in various organs. The exact mechanism of 201TI uptake by tumors is not completely known, but the activity of 201TI uptake is thought to be influenced by many factors: i) blood flow to the tumor and the nature of the tumor vessels, ii) tumor cell viability, iii) cell membrane permeability, iv) tumor cellularity, v) proliferation potential, and vi) some tumor types.

A number of clinical investigations have shown that the accumulation in potentially malignant lesions persists longer than in benign lesions, and because of this feature 201TI scintigraphy is now being used to differentiate between benign and malignant lesions, but it is not always entirely reliable, and some exceptions have been reported. The above rule does not apply to certain types of soft tissue tumors, and Tomami et al. reported that in cases of lung cancers the degree of 201TI accumulation to the malignant lesion and the clearance from lesions vary.
according to the histological type. It must be borne in mind that 201TI does not always accumulate in malignant tumors and, that the tumor affinity differs.

The authors retrospectively evaluated the 201TI findings in 8 patients with neuroblastoma in order to elucidate its clinical usefulness in this disease.

In our 7 cases of neuroblastoma, as stated above, none of the primary tumors or metastatic lymph nodes concentrated 201TI. We paid careful attention not to overlook faint uptake by the abdominal tumor, since there is normal intense physiological distribution of 201TI in both kidneys, the liver, and intestines. In all cases 201TI activity in the abdominal tumors was less than not only in the adjacent 201TI avid organs but also in the surrounding background tissue, and the tumors were identified as cold areas. Previously Montravers et al. and Howman-Giles et al. also reported on the lesser avidity of 201TI for neuroblastoma, but the reason for the absence of 201TI accumulation has not yet been clarified. Some features of neuroblastomas, perhaps ion-transport systems, tumor cell-membrane permeability, tumor cellularity, viability, or some other factors, would interfere with the mechanism of 201TI accumulation. Our results for primary lesions are in accordance with previously published reports, and it seems that the lack of 201TI uptake would be one of the characteristics of neuroblastoma, irrespective of the degree of malignant behavior of the individual tumor. These results made us less enthusiastic about examining more patients.

On the other hand, interestingly, the 201TI scintigraphy findings in the bone marrow and cortical bone lesions differed from those in the intra-abdominal tumors. Skeletal metastatic lesions were visualized on the early 201TI scans, and the accumulation showed fast washout.

Normally there is no significant physiological accumulation of 201TI by bone or bone marrow except for uptake in the normal growth plates of the long bones in children. Clear accumulation in the vertebrae and the diaphyses of long bones indicates a pathological condition.

There have been reports of 201TI accumulation in the bone marrow in relation to tumor cell infiltration in myeloma and Hodgkin's lymphoma. As a tumor-seeking agent, 201TI is a useful tool for evaluating patients with malignancy, and it detects the affected bone marrow, but it is difficult to understand why 201TI accumulates only in bone marrow and bone metastatic lesions and not in abdominal neuroblastomas. Metastatic tumor cells may have almost the same characteristics as the primary and lymph node lesions in terms of cell membrane permeability or ion transport systems, cellularity and tumor viability. If there is any difference between the features of intra-abdominal lesions and skeletal lesions, it would be the vascularity and capillary formation in the tumor. A solid mass is usually fed by one or more vessels, whereas in the bone marrow the tumor cells are disseminated and are surrounded by an abundant blood supply. This form of blood supply may be one of the reasons why only the bone marrow lesions showed 201TI uptake on the early images. Accumulation would not be related to the ability of the neuroblastoma cells to pick up 201TI, but would be caused by regional blood flow, in the same way that 201TI is known to accumulate in inflammation on early images.

There is also a report on diffuse 201TI uptake by bone marrow after treatment with granulocyte stimulating factor in an AIDS patient with Kaposi's sarcoma. In that report the authors mentioned that bone marrow hypermetabolism induced 201TI accumulation. Increased cell production and metabolism may cause the Na-K ATPase activity to increase and result in 201TI uptake.

Thus, in our cases, the form of regional blood supply, reactive inflammation or hyperfunction of the bone marrow associated with the presence of the metastatic foci may have contributed to the 201TI accumulation in the bone marrow, rather than the characteristics of the tumors themselves. As to the cortical involvement, the periosseous reaction may contribute to the 201TI uptake. There is no conclusive proof of these hypotheses, but the fact that the bone marrow uptake did not persist confirms that the uptake mechanism is independent of the malignant behavior of the tumor. In case 8, after the resolution of MIBG accumulation, inflammation of the bone and persisting periostial reaction may have led to the 201TI accumulation.

It is noteworthy that 201TI accumulation by the skeleton does not always mean tumor cell infiltration. Lebahi et al. reported that on MRI studies abnormal bone marrow signals often persist after chemotherapy for neuroblastoma, despite complete normalization of the MIBG scan, and that an abnormal MRI signal does not necessarily indicate the presence of disease. It may also be true that early 201TI early accumulation in the bone marrow or bone does not necessarily indicate the presence of a viable tumor, and this might be observed in other tumors besides neuroblastoma. In cases of suspected malignant tumor, the mechanism of early 201TI uptake by skeletal lesions would include the tumor characteristics and other factors. But when uptake does not persist on the delayed image, it may indicate that the early uptake reflects hypervascularity, inflammation, hypermetabolism of the bone marrow or periosteal reactions. Careful attention must be paid to the interpretation of skeletal 201TI distribution.

Many more cases need to be examined to describe the reliable features of 201TI scintigraphy in neuroblastoma. The experience described here suggests that 201TI scintigraphy is not very useful in the diagnosis or follow-up of neuroblastoma, but it shows one interesting possible mechanism of 201TI accumulation in bone marrow and bone. The uptake by affected bone marrow or bone might be independent of the tumor characteristics, so we must take care in the interpretation of skeletal 201TI accumulation.
REFERENCES

