Glialarcoma with thallium-201 SPECT

Naoto Watanabe,* Eikichi Okada,** Masashi Shimizu,* Kyo Noguchi,* Shuichi Endo,**
Ryusuke Futatsuya,* Yukio Horie,*** Norihisa Tonami† and Hikaru Seto*

Departments of *Radiology, **Pathology and ***Neurosurgery, Toyama Medical and Pharmaceutical University
Departments of *Radiology and **Neurosurgery, Saiseikai Toyama Hospital
†Department of Nuclear Medicine, Kanazawa University

Thallium-201 (201TI) chloride scintigraphy is the imaging method use for the detection of various
tumors including glioblastoma, but only limited information on 201TI uptake in gliosarcoma is
available. We investigated a patient with gliosarcoma by means of 201TI single-photon emission
computed tomography (SPECT) and MRI. SPECT imaging revealed high 201TI uptake in the tumor,
which was closely correlated with contrast-enhancement on MRI. These results suggest that SPECT
with 201TI may be useful for detecting gliosarcoma and provide physiological information on this
tumor.

Key words: gliosarcoma, 201TI, SPECT, MRI

INTRODUCTION

GLIOSARCOMA is an uncommon malignant brain tumor,
composed of neuroectodermal and mesenchymal tissue. It
has been reported as representing described 2.3% of all
gliomas, 5% of astrocytomas, and 8% of glioblastomas.1
Many reports have focused on histogenic and pathologi-
ical aspects of this tumor, but only limited information
is available concerning the MR characteristics of glio-
sarcoma.2,3

One general tumor scanning agent in clinical use for the
detection of brain tumors including glioblastomas is thal-
lum-201 (201TI) chloride.4-6 These researchers suggested that
201TI imaging may be a useful technique for investigat-
ing patients with glioblastoma.

The purpose of this paper is to report the 201TI SPECT
and MRI findings in a patient with gliosarcoma.

CASE REPORT

A 44-year-old woman was admitted with recent memory

Vol. 14, No. 5, 2000

Case Report 391
and sarcomatous neoplastic elements that appear de novo and at the same time.1,9,10 Galani et al. demonstrated that gliosarcoma behaves similarly to glioblastoma multiforme (GBM). When similar treatments (combined radiation and chemotherapy) were administered, there was no significant difference between patients with GBM and gliosarcoma in time to progression and overall survival time. The median survival time was 9 months for patients with gliosarcoma.11 Although, in this patient radiotherapy and chemotherapy were performed, this patient died 14 months after admission.

Dwyer reported 6 gliosarcoma patients with emphasis on the MR feature. All of the tumors showed enhancement on T1-weighted images that corresponded to the areas of intermediate signal intensity on T2-weighted images. Three of the tumors diffuse inhomogeneous enhancement with more intense peripheral enhancement. The other three tumors had intense, irregular, ring-like enhancement surrounding central hypointensity.3 Our findings of gliosarcoma on MRI were also irregular, ring-enhanced tumors similar to the above mentioned.

201TI scintigraphy can be generally used to detect of various malignant tumors including glioblastoma.4-6 Ishibashi et al. reported that 201TI uptake in glioma is correlated with proliferating cell nuclear antigen.12 201TI scintigraphy may distinguish the histologic grade of

\textbf{Fig. 1} MRI on enhanced T1 weighted images revealed irregular ring-enhanced tumor in the left temporo-parietal lobe.

\textbf{Fig. 2} Transverse SPECT image showed prominent tumor uptake in the left temporo-parietal lobe.

\textbf{Fig. 3} A. Hematoxylin-eosin stain (× 50). The tumor was composed of haphazardly arranged anaplastic polygonal or pump spindle cells presenting severe atypia. A few giant atypical cells with bizarre nuclei were present among them. B. Immunohistochemistry (× 50). Immunohistochemistry using anti-GFAP (glial fiber acid protein) antibody presented intensive positive reaction in the tumor cells demonstrating glial origin. C. Hematoxylin-eosin stain (× 93). Atypical spindle-shaped tumor cells were present in the perivascular regions.

\section*{Annals of Nuclear Medicine}
glioma, tumor uptake with ^{201}Tl in gliosarcoma has not been extensively reported. Taki et al. recently reported that the degree of early ^{201}Tl uptake in malignant brain tumors including glioblastoma is correlated well with that of contrast-enhancement on MRI. ^{201}Tl uptake depends in the main on regional blood flow, destruction of the blood brain barrier and tumor viability, whereas contrast-enhancement on MRI depends on BBB dysfunction, regional blood flow and tissue permeability.13 It is suggested that ^{201}Tl may evaluate tumor viability.

In this patient, we could visualize high ^{201}Tl uptake in gliosarcoma on SPECT imaging. High ^{201}Tl uptake in our case is correlated with the histological grade as with glioblastoma.$^{4-6}$ This shows the precise localization and histological characteristics of the tumor, and correlates closely with the results of contrast-enhancement on MRI. We suggest that ^{201}Tl SPECT may be useful for detecting gliosarcoma and providing physiological information on this tumor.

REFERENCES