Detecting meningeal carcinomatosis from breast cancer with thallium-201 SPECT

NAOTO WATANABE,* MASASHI SHIMIZU,* KYO NOGUCHI,* HIDETO KAWABE,*
NORTHISA TONAMI** AND HIKA ROI SETO*

*Department of Radiology, Toyama Medical and Pharmaceutical University
**Department of Nuclear Medicine, Kanazawa University

Thallium-201 (201Tl) scintigraphy is one of the imaging methods used in the detection of various tumors including brain metastasis. We evaluated a patient with meningeal carcinomatosis from breast cancer by using 201Tl single-photon emission computed tomography (SPECT). Meningeal spread of a tumor was noted on enhanced CT. SPECT revealed tumor localization in meningeal carcinomatosis. These results suggest that SPECT with 201Tl may be useful in detecting meningeal carcinomatosis from breast cancer.

Key words: meningeal carcinomatosis, breast cancer, 201Tl SPECT, Tumor imaging

INTRODUCTION

MENINGEAL CARCINOMATOSIS is recognized as a rare form of diffuse or multifocal leptomeningeal metastasis of solid tumors. Breast cancer and lung cancer are the most common primary tumors associated with meningeal carcinomatosis.1,2 The incidence of meningeal carcinomatosis has been reported to be 5% in patients with breast cancer3 and from 9 to 28% in patients with small cell carcinoma of the lung.4,5

201Tl chloride, first used for myocardial imaging, has also been shown to have affinity for a variety of malignant tumors.6-11 Tumor uptake of 201Tl in brain metastasis was also described.12 It is suggested that 201Tl imaging may be useful in investigating patients with meningeal carcinomatosis.

The purpose of this paper is to report the scintigraphic SPECT findings in a patient with meningeal carcinomatosis from breast cancer by using 201Tl.

CASE REPORT

A 58-year-old woman was admitted with nausea and vomiting. Solid tubular carcinoma of recurrent breast tumor had already been confirmed by the surgery. Enhanced CT (Toshiba, TCT 900S, Tokyo, Japan) was performed to evaluate the neurological symptoms including ataxia. CT scan revealed prominent enhancement adjacent to the right cerebellar hemisphere, forth ventricle and cerebellar vermis with low density edema in the right cerebellar hemisphere and brain stem. Hydrocephalus was also detected (Fig. 1). Examination of the cerebrospinal fluid (CSF) could not be done, but meningeal carcinomatosis from breast cancer was highly suspected with these clinical findings. Transverse reconstruction of SPECT images was done with high-resolution SPECT with three-head rotating cameras (Toshiba, GCA 9300A, Tokyo, Japan) at 15 min postinjection of 3 mCi (111 MBq) of 201Tl chloride. Axial SPECT images (Fig. 2) showed abnormally high uptake of 201Tl in the mass lesion. SPECT findings were correlated with those of subsequent CT. Delayed SPECT imaging was not done. The patient died 2 months after admission. An autopsy could not be done.

DISCUSSION

The incidence of meningeal carcinomatosis in breast...
cancer patients accounts for 1% to 5% in most clinical studies. Tsukada et al. reported an incidence of meningeal carcinomatosis in breast cancer patients about 5.6%. The clinical diagnosis of meningeal carcinomatosis rests upon the findings of neurologic signs and symptoms of cerebral, cranial nerve, and spinal cord involvement, such as headache, change of mental status, ataxia and diplopia. The most important diagnostic test is examination of CSF. Wasserstrom et al. reported that the initial lumbar puncture was abnormal in 87 of 90 patients (97%). In our case, examination of CSF could not be done, but meningeal carcinomatosis from breast cancer was highly suspected with these clinical findings.

CT is helpful in the diagnosis of meningeal carcinomatosis. Contrast-enhanced CT may detect communicating hydrocephalus and abnormal enhancement of the tentorium, sylvian fissures and basal cisterns, cortical subarachnoid space, and ventricular walls. In our patient, CT findings were compatible with meningeal carcinomatosis from breast cancer, but our CT findings were not specific for meningeal carcinomatosis. The causes of abnormal meningeal enhancement on CT are subarachnoid hemorrhage, infection and neoplasm.

The prognosis of meningeal carcinomatosis from breast cancer has been considered poor, with or without treatment. The survival of patients remains short and median survival was 5.8 months after diagnosis, with a range of 1–29 months. A variety of treatments have been used including craniospinal radiotherapy and intrathecal chemotherapy. This patient refused to have chemotherapy, and prognosis was also very poor.

201TI scintigraphy can be generally used to detect various malignant tumors including breast cancer. Tumor uptake of 201TI in various brain tumors including brain metastasis has also been described, but tumor uptake of 201TI in meningeal carcinomatosis has not been extensively reported. High uptake of 201TI on early images in our case suggested that 201TI may accumulate in meningeal carcinomatosis from breast cancer. Staffen et al. found that 201TI brain SPECT early imaging helps to differentiate between malignant tumors, poorly vascularized benign lesions and necrosis. Liu et al. reported that 201TI brain SPECT early and delayed imaging is very useful in brain tumor localization, in distinguishing low-grade from high-grade brain tumors and in predicting histologic grades of brain tumors, but 201TI may accumulate in inflammation of the brain. Unfortunately we could not clarify the tumor uptake of 201TI in the primary breast cancer in our patient because 201TI scintigraphy had not been performed before.

We succeeded in demonstrating the tumor uptake of

Fig. 1 CT scan revealed prominent enhancement adjacent to right cerebellar hemisphere, forth ventricle and cerebellar vermis with low density edema in right cerebellar hemisphere and brain stem. Hydrocephalus was also detected.

Fig. 2 Transverse SPECT image showed tumor uptake in meningeal carcinomatosis.
meningeal carcinomatosis from breast cancer with 201TI SPECT imagings. These results suggested that 201TI scintigraphy may be a useful radiopharmaceutical agent for detecting of lesions with meningeal carcinomatosis from breast cancer.

REFERENCES

