Relationship between striatal $[^{123}\text{I}]\beta$-CIT binding and four major clinical signs in Parkinson’s disease

Hitoshi Shinotoh, Yoshitaka Uchida, Hisao Ito and Takamichi Hattori

*Department of Neurology, Chiba University School of Medicine
**Department of Radiology, Chiba University School of Medicine

We investigated the correlation between clinical severity and striatal $[^{123}\text{I}]\beta$-CIT binding in 12 patients with Parkinson’s Disease (PD: 6 men and 6 women, age: 65 ± 7 years, Hoehn & Yahr stage: 1 to 3). The clinical severity of PD patients was measured with the Unified Parkinson’s Disease Rating Scale (UPDRS) after withdrawal of antiparkinsonian medication at least 12 hours before assessment. $[^{123}\text{I}]\beta$-CIT binding in the caudate and putamen was measured at 3 hours [$V^\beta_3$ (day 1)], and at 24 hours [$V^\beta_3$ (day 2)] after tracer injection with small square ROIs. The specific striatal uptake index (day 2) was calculated with large square ROIs that encompassed the whole striatum. The best correlation ($r = -0.82$, $p < 0.0012$) was between putamenal $V^\beta_3$ (day 2) and the motor UPDRS scores. When the motor UPDRS scores were divided into four subscales, bradykinesia was the only sign that correlated significantly with putamenal $V^\beta_3$ (day 2) ($r = -0.81$, $p < 0.002$). $[^{123}\text{I}]\beta$-CIT SPECT is a useful marker of disease severity in PD with potential utility in the serial monitoring of disease progression.

**Key words:** Parkinson’s disease, single photon emission computed tomography, $\beta$-CIT, dopamine, transporter