Noninvasive identification of left ventricular involvements in arrhythmogenic right ventricular dysplasia: Comparison of 123I-MIBG, 201TICI, magnetic resonance imaging and ultrafast computed tomography

Nobukazu Takahashi,* Yoshiio Ishida,* Masakazu Maeno,* Yoshiaki Hirose,* Shigeo Kawano,* Shyuji Fukuda,* Kohel Hayashida,* Sachio Kuribayashi,* Seiki Hamada,* Naoki Yamada,* Makoto Takamiya,* Katuto Shimomura** and Tohru Ohe***

*Departments of Radiology and **Cardiology, National Cardiovascular Center
***Department of Cardiovascular Medicine, Okayama University Medical School

We examined the feasibility of myocardial 123I-MIBG, 201TICI, magnetic resonance imaging (MRI) and ultrafast computed tomography (UFCT) for the early detection of left ventricular involvements in 15 patients with arrhythmogenic right ventricular dysplasia (ARVD). Radionuclide ventriculography (RNV) and myocardial imaging with 123I-MIBG, 201TICI, MRI and UFCT were performed in all 15 patients and in 10 normal subjects.

The patients’ scans were visually interpreted by two nuclear medicine physicians taking into consideration the extent score (ES) and severity score (SS) calculated by using the bull’s-eye view in relation to normal data derived from the normal subjects. The left ventricular ejection fraction (LVEF) was measured by RNV. Fourteen (93%) patients showed regional 123I-MIBG defects, while 12 (80%) patients showed regional 201TICI defects. The ES and SS were higher in 123I-MIBG than 201TICI (ES: 31.5±18.5 vs. 17.5±18.2, p<0.01, SS: 34.8±42.2 vs. 16.9±37.5, p<0.01). Abnormal UFCT and MRI findings suggesting fatty involvements of the LV myocardium were demonstrated in 7 patients (Group B), while 7 patients showed regional 123I-MIBG defects without abnormal UFCT and MRI findings (Group A). 123I-MIBG was significantly more sensitive than UFCT and MRI (p<0.05), although one patient, an exception, showed abnormal UFCT findings for the apex of the LV myocardium without abnormal 123I-MIBG and MRI findings. The LVEF, as a measure of LV systolic function, was better preserved in Group A than in Group B (59.3±3.6 vs. 45.8±5.8, p<0.01).

The present findings indicated that myocardial imaging with 123I-MIBG sensitively detects myocardial damage in patients with ARVD in the early stage when cardiac systolic function is still preserved.

Key words: arrhythmogenic right ventricular dysplasia, 123I-MIBG, 201TICI, magnetic resonance imaging, ultrafast computed tomography imaging

INTRODUCTION

ARRHYTHMOGENIC RIGHT VENTRICULAR DYSPLASIA (ARVD) has been characterized as an underlying structural fibro-lipomatous infiltration abnormality with degeneration of the right ventricular (RV) myocardium.1,2

Received March 10, 1997, revision accepted June 25, 1997.
For reprint contact: Nobukazu Takahashi, M.D., Department of Radiology, National Cardiovascular Center, S 7-1 Fujishiro-dai, Suita, Osaka 565, JAPAN.
Table 1 Clinical profiles of 15 ARVD patients

<table>
<thead>
<tr>
<th>Pt. No.</th>
<th>Age (yr)/Sex</th>
<th>Chief complaint</th>
<th>ECG</th>
<th>Clinical VT</th>
<th>VT focus</th>
<th>RV biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25/F</td>
<td>Syncope</td>
<td>V1</td>
<td>NSVT</td>
<td>RVOT</td>
<td>fibrosis</td>
</tr>
<tr>
<td>2</td>
<td>47/M</td>
<td>Syncope</td>
<td>V1, V2</td>
<td>SVT</td>
<td>RVOT</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>3</td>
<td>38/F</td>
<td>Syncope</td>
<td>—</td>
<td>NSVT</td>
<td>RVOT</td>
<td>fibrosis</td>
</tr>
<tr>
<td>4</td>
<td>65/M</td>
<td>Syncope</td>
<td>V1</td>
<td>SVT</td>
<td>RVOT</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>5</td>
<td>41/M</td>
<td>Syncope</td>
<td>V1-V4</td>
<td>SVT</td>
<td>RVOT</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>6</td>
<td>66/F</td>
<td>Syncope</td>
<td>V1-V3</td>
<td>SVT</td>
<td>RVOT</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>7</td>
<td>39/M</td>
<td>Palpitation</td>
<td>—</td>
<td>NSVT</td>
<td>RVOT</td>
<td>fibrosis</td>
</tr>
<tr>
<td>8</td>
<td>24/F</td>
<td>Syncope</td>
<td>—</td>
<td>NSVT</td>
<td>RVOT</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>9</td>
<td>18/M</td>
<td>Palpitation</td>
<td>V1-V3</td>
<td>SVT</td>
<td>undefined</td>
<td>fibrosis</td>
</tr>
<tr>
<td>10</td>
<td>33/M</td>
<td>Syncope</td>
<td>V1-V2</td>
<td>SVT</td>
<td>undefined</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>11</td>
<td>40/M</td>
<td>Palpitation</td>
<td>V1-V4</td>
<td>SVT</td>
<td>RVIF</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>12</td>
<td>52/M</td>
<td>Syncope</td>
<td>V1-V4</td>
<td>SVT</td>
<td>RVOT</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>13</td>
<td>53/F</td>
<td>Syncope</td>
<td>V1-V3</td>
<td>SVT</td>
<td>undefined</td>
<td>not done</td>
</tr>
<tr>
<td>14</td>
<td>50/M</td>
<td>Syncope</td>
<td>V1-V4</td>
<td>SVT</td>
<td>RVIF</td>
<td>fat, fibrosis</td>
</tr>
<tr>
<td>15</td>
<td>44/M</td>
<td>Syncope</td>
<td>V3, V4</td>
<td>SVT</td>
<td>undefined</td>
<td>fat, fibrosis</td>
</tr>
</tbody>
</table>

M = male; F = female; ECG = electrocardiography; VT = ventricular tachycardia; NSVT = nonsustained VT; SVT = sustained VT; RV = right ventricle; RVOT = right ventricular outflow tract; RVIF right ventricular inflow tract

MBIG uptake is frequently noted in the septal left ventricle,1213 and functional abnormalities of the left ventricular (LV) myocardium indicating LV involvements have been observed in the more advanced stages of the disease.14 Histologically, a pattern of widespread massive fatty infiltration and fibrosis with very few myocardial cells has been detected in the LV myocardium.1,13 Recently, Lerch and Wichter reported that [123I]-MBG imaging may have application in the early diagnosis of the LV involvements in ARVD.1213 Ultrafast computed tomography (UFCT) and magnetic resonance imaging (MRI) have recently come to be accepted as useful noninvasive methods for detection of the myocardial involvements in ARVD.1619 There is no report, however, regarding a comparative study of [123I]-MBG imaging with other noninvasive imaging methods in patients with ARVD.

The purpose of this study was to test the feasibility of myocardial [123I]-MBG, [201Tl]Cl, MRI and UFCT for the early detection of LV involvements in ARVD.

MATERIALS AND METHODS

Subjects

Fifteen patients (10 men and 5 women: mean age, 42 years; range, 18 to 66 years) were included in this study. Twelve patients had experienced syncope, and 2 patients had experienced palpitation. In 7 patients medically refractory VT was terminated by cardioversion. ARVD was diagnosed in the presence of documented sustained or nonsustained VT of left bundle branch block morphology, and evidence of characteristic regional severe RV contraction abnormalities (akinesia or dyskinesia) with or without dilatation demonstrated by right ventriculography and radionuclide ventriculography. All patients underwent coronary angiography and had a normal coronary angiogram. Twelve patients had repolarization abnormalities in the right precordial electrocardiographic leads during sinus rhythm (T-wave inversion with excess in lead V1). Patients with arterial hypertension, diabetes mellitus, coronary artery disease, dilated or hypertrophic cardiomyopathy, congenital or acquired valvular heart disease, or inflammatory heart disease were excluded on the basis of the clinical, echocardiographic, coronary angiographic and radionuclide ventriculographic findings.

Electrophysiological study

An electrophysiological study (EPS) was performed in patients in the non-sedated state not currently receiving anti-arrhythmic drugs whenever possible, by means of a stepwise protocol of programmed ventricular stimulation including single, double and triple extrastimuli during sinus rhythm and ventricular stimulation at two RV stimulation sites (the apex and outflow). If no sustained VT was inducible, the stimulation was repeated during isoproterenol infusion. Endocardial mapping was performed during sinus rhythm and/or during ventricular ectopic activity. The site of origin of VT was defined as the earliest RV local electrocardiogram (ECG) and an identical paced QRS compared with the QRS during VT as verified by I2-lead ECG.

Myocardial imaging of [123I]-MBG and [201Tl]Cl

Image acquisition: In the assessment of myocardial sympathetic nervous activity, [123I]-MBG was injected intravenously (111 MBq), and data were acquired 15 min (early image) and 4 hours (delayed image) after the injection; the delayed image was adopted to allow for
Fig. 1 201TlCl, 123I-MIBG, UFCT, MRI and left ventriculography in a patient with ARVD (case 2). (a) and (b): There is a normal distribution of 201TlCl, whereas 123I-MIBG images demonstrate reduced tracer uptake in the septal and apical area of LV myocardium. (c) and (d): UFCT and MRI shows normal findings. (e): Left ventriculography shows normal wall motion.

clearance of non-specific tissue uptake. No patient was administered reserpine or tricyclic antidepressants. 201TlCl imaging was performed within 3 days to 3 weeks after the 123I-MIBG study, and only the resting image was obtained. 201TlCl (111 MBq) was intravenously injected, and data were acquired 15 minutes after
Fig. 2 201 TI, 123 I-MIBG, UFCT, MRI and left ventriculography in a patient with ARVD (case 13). (a) and (b); There is reduced 201 TI and 123 I-MIBG tracer uptake in the anterior, lateral, and apical areas of the LV myocardium. (c); UFCT shows low density areas in the anterior and lateral walls of left ventricle (arrows in c). The CT number of these areas were -30 Hounsfield units, suggesting fatty tissue. (d); MRI image shows high signal intensity suggesting fatty infiltration in the same areas (arrow in d). (e); Severe hypokinesia is demonstrated in the anterior wall.

the injection. Simultaneous administration and dual-energy acquisition were avoided because of the complexity of the crosstalk fraction between 123 I-MIBG and 201 TI.

123 I-MIBG and 201 TI imagings were performed with a single gamma camera equipped with a low energy general purpose collimator that was interfaced to a minicomputer.
Fig. 3 201TlI and 123I-MIBG images of a representative case, and bull’s eye map of the relative 123I-MIBG uptake in the control group. There is a homogeneous distribution of 201TlI and 123I-MIBG. Values are given as mean ± SD.

Extent Score (ES) = number of abnormal points/total points.
Severity Score (SS) = Σ(normal count - abnormal count) in each abnormal point/total points.

Maximum-count circumferential profile analysis is performed every 10 degrees in each of 20 short axis slices. 720 points were equally divided into anterior, septal, inferior and lateral segments. Points having a relative uptake of less than two standard deviations below the mean value for the control group were considered to be abnormal.

Radionuclide ventriculography
We performed radionuclide ventriculography (RNV) in all of the 15 patients to assess RV and LV function. Technetium-99m diethylenetriaminepentaacetic acid human serum albumin (99mTc-DTPA-HSA, 740 MBq) was injected as an intravenous bolus, and first-pass measurements to calculate the RV ejection fraction (RVEF) were performed in the supine position with the collimator aligned in a 15° to 30° right anterior oblique position. The scan image was acquired with a gamma camera equipped with an all-purpose parallel-hole collimator. Radionuclide counts were collected with a matrix size of 64 × 64 pixels. After an average cycle length was established, gated imaging acquisition was started to calculate the LV ejection fraction (LVEF); every incoming beat was
<table>
<thead>
<tr>
<th>Pt. No.</th>
<th>Apic</th>
<th>Ant</th>
<th>Sept</th>
<th>Inf</th>
<th>Lat</th>
<th>ES</th>
<th>SS</th>
<th>Apic</th>
<th>Ant</th>
<th>Sept</th>
<th>Inf</th>
<th>Lat</th>
<th>ES</th>
<th>SS</th>
<th>RNV</th>
<th>UFCT</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>59</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>66</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>1</td>
<td>41</td>
<td>58</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>21</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17</td>
<td>4</td>
<td>19</td>
<td>61</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>2</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>7</td>
<td>23</td>
<td>58</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>29</td>
<td>9</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>8</td>
<td>1</td>
<td>56</td>
<td>59</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>22</td>
<td>9</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>17</td>
<td>1</td>
<td>45</td>
<td>51</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>20</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>27</td>
<td>8</td>
<td>44</td>
<td>53</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>55</td>
<td>77</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>22</td>
<td>12</td>
<td>33</td>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>26</td>
<td>26</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>1</td>
<td>18</td>
<td>53</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>29</td>
<td>18</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>23</td>
<td>15</td>
<td>36</td>
<td>49</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>38</td>
<td>39</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>22</td>
<td>4</td>
<td>39</td>
<td>41</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>68</td>
<td>153</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>65</td>
<td>139</td>
<td>30</td>
<td>36</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>59</td>
<td>94</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>47</td>
<td>65</td>
<td>44</td>
<td>44</td>
<td>–</td>
</tr>
</tbody>
</table>

Apic = apical; Ant = anterior; Sept = septal; Inf = inferior; Lat = lateral
SS = severity score calculated from circumferential profile analysis; ES = extent score calculated from circumferential profile analysis;
RNV = radionuclide ventriculography; RVREF = right ventricular ejection fraction (%) ; LVEF = left ventricular ejection fraction (%)
UFCT = ultrafast computed tomography; MRI = magnetic resonance imaging

Statistics

Results are shown as the mean ± standard deviation. The Student's t-test was used to compare categorical variables, and unpaired t-test was used to compared continuous variables between the two groups. A p-value < 0.05 was considered significant.
RESULTS

Electrophysiological study results
VT originated in the RV outflow tracts in 9 patients, and in the RV inflow tracts in 2 patients (Table 1). Clinical VT was sustained in 11 patients, and nonsustained VT occurred in 4 patients.

Case presentations

Case 1
The myocardial 123I-MIBG, 201TlI, UFCT and MRI images in Patient 2, with ARVD, are shown in Figure 1. 123I-MIBG defects were demonstrated in the septal and apical areas of the LV myocardium, whereas 201TlI, UFCT and MRI showed normal findings.

Case 2
The myocardial 123I-MIBG, 201TlI, UFCT and MRI images in Patient 13, also with ARVD, are shown in Figure 2. Both 123I-MIBG and 201TlI defects were demonstrated in the anterior, lateral and apical areas of the LV myocardium. UFCT showed low density, the CT number (~30 Hounsfield units) suggesting fatty tissue in the anterior and lateral walls of the LV myocardium. MRI showed high signal intensity in the same areas of the LV myocardium. Severe hypokinesia in the anterior wall was demonstrated by left ventriculography.

Scintigraphic results
In 201TlI and 123I-MIBG imaging, the right ventricle was not visible in any patient. There was no RV or LV focus of enhanced 123I-MIBG activity (‘hot spot’) in any patient.

In the early 123I-MIBG imaging, only 4 (27%) of the 15 ARVD patients showed homogeneous tracer uptake, with the remaining 11 patients (73%) showing reduced 123I-MIBG uptake. In the delayed 123I-MIBG imaging, 14 patients (93%) showed regional reduced 123I-MIBG uptake. In 11 patients (73%) with an abnormal 123I-MIBG scan, reduced tracer uptake located in the septal region of the left ventricle was seen. In the resting 201TlI imaging, 12 patients (80%) showed regional perfusion defects, and all of them showed 123I-MIBG defects. The ES and SS were higher in 123I-MIBG than in 201TlI imaging (ES: 31.5 ± 18.5 vs. 17.5 ± 18.2, p < 0.01, SS: 34.8 ± 42.2 vs. 16.9 ± 37.5, p < 0.01). The 123I-MIBG defects were larger and more severe than the 201TlI defects. Forty-five (60%) of 75 segments showed 123I-MIBG defects, of which 14 (31%) were discordant defects and 31 (69%) were concordant defects (Table 2).

UFCT and MRI findings
Eight patients demonstrated abnormal findings suggesting fatty involvement of the RV myocardium on UFCT or MRI, in 7 of whom such findings were seen on both UFCT and MRI, but none of the 15 patients showed 123I-MIBG uptake in the RV myocardium and abnormalities in the RV myocardium could not be assessed by 123I-MIBG imaging. On both UFCT and MRI, 7 patients (46%) demonstrated abnormal findings suggesting fatty involvement of the LV myocardium, and 14 patients (93%) showed 123I-MIBG defects in the LV myocardium. 123I-MIBG imaging was significantly more sensitive than UFCT and MRI (p < 0.05). One patient, an exception, had abnormal UFCT findings in the apex of the LV myocardium without abnormal 123I-MIBG and MRI findings (Fig. 4).

Fig. 4 123I-MIBG extent map and UFCT images in a patient with ARVD (case 12). UFCT shows low density areas in the apical and lateral wall of LV myocardium (arrows). In 123I-MIBG image, abnormal uptake were demonstrated only in the lateral wall.

Table 3 Comparison of scintigraphic and cardiac systolic functional results between Group A and Group B

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>7</td>
<td>7</td>
<td>ns</td>
</tr>
<tr>
<td>1-123MBG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>20.7 ± 7.9</td>
<td>46.0 ± 15.7</td>
<td>p < 0.01</td>
</tr>
<tr>
<td>SS</td>
<td>11.3 ± 5.5</td>
<td>63.3 ± 48.2</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>RVEF (%)</td>
<td>37.8 ± 12.9</td>
<td>31.7 ± 9.2</td>
<td>ns</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>59.3 ± 3.6</td>
<td>45.8 ± 5.8</td>
<td>p < 0.01</td>
</tr>
</tbody>
</table>

ES = extent score; SS = severity score; RVEF = right ventricular ejection fraction; LVEF = left ventricular ejection fraction.
Right and left ventricular Function
All 15 patients underwent radionuclide ventriculography. Fourteen patients had abnormal RVEF (mean RVEF, 35.3%). All 15 patients had localized akinesis, or dyskinesia, and 3 patients had LV dilatation. Eight patients had abnormal LVEF (mean LVEF, 53.1%), and 3 patients had LV dilatation. Fourteen patients with 123I-MIBG defects were divided into 2 groups of 7 patients each, without abnormal UFCT and MRI findings, suggesting fatty involvement of the LV myocardium (Group A), and 7 with abnormal UFCT and MRI findings (Group B). The ES and SS of 123I-MIBG were larger in Group B than Group A (p < 0.01 and p < 0.05 respectively), and the systolic function as reflected by LVEF was better preserved in Group A (p < 0.01) (Table 3).

Correlational analysis of results
The analysis of the relation of 123I-MIBG scintigraphic findings to the site of origin of the VT demonstrated reduced septal uptake in 5 (56%) of 9 patients with RV outflow tract origin of the VT, and in both patients with RV inflow tract origins. Both of the latter patients had reduced LVEF, and both had LV involvements demonstrated by UFCT, with large and severe 123I-MIBG defects. In contrast, only 2 (22%) of the 9 patients in the former group had reduced LVEF.

There was no correlation between the results of 123I-MIBG scintigraphy and any of age, history of syncope or cardiac arrest, duration (sustained or nonsustained), RVEF, or biopsy results.

DISCUSSION
In this study, ARVD was diagnosed by observation of sustained or nonsustained VT of left bundle branch block morphology and evidence of characteristic regional RV contraction abnormalities. Abnormal fibrolipomatous infiltration of the RV myocardium was detected by endomyocardial biopsy in 10 patients, and 2 of the other patients showed LV involvements in which the CT number was equal to that of fat as measured by UFCT. It is difficult to distinguish ARVD from RV dilated cardiomyopathy, although regional RV contraction abnormalities and histological characteristics are not suggestive of RV dilated cardiomyopathy.1,24

UFCT and MRI have recently come to be used for detection of the myocardial involvements in ARVD,16-19 and the spatial resolution attained with UFCT or MRI is superior to that of 123I-MIBG imaging. Only 47% of the patients in our study, however, showed abnormal UFCT and MRI findings for the LV myocardium. 123I-MIBG imaging was significantly more sensitive than UFCT and MRI. All patients with abnormal UFCT and MRI findings had abnormal LVEF, and 3 had marked LV dilatation. Functional abnormalities of the LV indicating LV involvement have been observed in the more advanced stage of the disease.1,25 We speculate that in ARVD the progression of pathophysiological stages in the LV myocardium initially results in 123I-MIBG defects which suggest sympathetic denervation, followed by 201Tl defects and concordant defects which may suggest transmural fatty infiltration or myocardial fibrosis with associated LV dysfunction, and associated LV dilatation. Lerc and Wichter reported that 123I-MIBG imaging allowed detection of LV adrenergic dysinnervation in ARVD, and, as we found, that 123I-MIBG defects were most frequently detected in the septum and adjacent regions.12,13 This region is anatomiocally located adjacent to the right ventricle and closely connected with it via the sympathetic nerve supply. Sympathetic nerve fibers extend through the subepicardial layers, and a dysplastic process might involve the subepicardial layers of the LV in ARVD12; we speculate that subepicardial dysplastic change may alter or modify autonomic function. 123I-MIBG imaging may therefore be more sensitive in identifying the early stage of LV involvement in ARVD than any other noninvasive imaging method. With this method, we also noted that in one patient, the apical region, in which there were abnor- mal UFCT findings, could not be detected. Quantitative analysis with the bull’s eye map results in under-estimation in the apical region.

Fourteen of our patients had 123I-MIBG defects in the LV myocardium, but none of them had clinical VT of LV origin. In regard to the occurrence of subepicardial dysplastic change in the early stage which might alter the subepicardial sympathetic fibers and may modify autonomic function, there may occur subepicardial sympathetic dysfunction resembling the “denervation supersensitivity” in phenol application, a milieu conducive to the development of VT.26-28 But because of the degenerative character and massive involvement of fatty infiltration, denervation supersensitivity rather than the effect on a sympathetic imbalance between the normal and hypoinervated myocardium may contribute to VT.14

We previously reported that mismatch regions of 123I-MIBG defects with normal 201Tl uptake were closely connected with the VT origin in dilated cardiomyopathy.29 In ARVD, we could not obtain direct evidence of any similar relation, because 123I-MIBG could not be detected in the RV. Further examination is needed.

123I-MIBG imaging may be a reliable noninvasive method of detection early in the course of ARVD. UFCT and MRI may be useful in the detection of abnormal findings in patients who show LV dysfunction with advanced fatty infiltration and fibrosis.

REFERENCES
2. Fontaine G, Fontaliran F, Linares-cruz E, Chouette G,

