In-chloride uptake in pulmonary aspergillosis

Hitoya Ohta,* Akihito Yonezawa,** Kaori Nasu*** and Masayuki Shintaku***

Departments of *Laboratories, **Internal Medicine, and ***Pathology,
Osaka Red Cross Hospital

Unusual pulmonary uptake of \(^{111}\)In-chloride \((^{111}\text{InCl}_3)\) was recognized in a patient with aplastic anemia. A chest radiograph showed infiltrative shadow concordant with \(^{111}\text{InCl}_3\) uptake, and autopsy revealed pulmonary aspergillosis. To our knowledge, there is not an extensive literature on \(^{111}\text{InCl}_3\) uptake in pulmonary aspergillosis.

Key words: \(^{111}\text{In-chloride}, \text{lung, aspergillosis, aplastic anemia}\)

INTRODUCTION

\(^{111}\text{In-chloride} \((^{111}\text{InCl}_3)\) has been applied for scintigraphic examination of the bone marrow.\(^1-3\) We report an aplastic anemia case in which unusual pulmonary uptake of \(^{111}\text{InCl}_3\) was recognized during bone marrow scintigraphy.

CASE REPORT

A 63-year-old male was found to have a "low blood count" at a hospital which the patient visited because of high fever, exertional dyspnea and purpura of the lower extremities. He was referred to our hospital for further evaluation. On admission, hematological values were as follows: erythrocyte count 196 × 10\(^6\), leukocyte count 1,700 with 3% segmented neutrophils and 97% lymphocytes, thrombocyte count 5.2 × 10\(^4\). Myelogram showed 13,100 nucleated cells with 5.2% erythroid series and 92.5% lymphocytes. Chest radiograph showed no significant abnormalities. Therapeutic trials of steroids, granulocyte colony-stimulating factor and antibiotics did not result in favorable response. Bone marrow scintigraphy performed 48 hours after intravenous injection of 74 MBq of \(^{111}\text{InCl}_3\) showed marked decreased bone marrow uptake and abnormal pulmonary uptake (Fig. 1). Chest radiograph disclosed an infiltrative shadow concordant with \(^{111}\text{InCl}_3\) uptake (Fig. 2).

The patient died 8 days after \(^{111}\text{InCl}_3\) scintigraphy due to respiratory failure. Autopsy revealed panmyelophthisis and pulmonary aspergillosis (Fig. 3). No extramedullary hematopoiesis was recognized in the lungs.

DISCUSSION

During studies of \(^{111}\text{InCl}_3\) as a tumor seeking agent, visualization of red marrow-containing bones was recognized.\(^4\) Thereafter, \(^{111}\text{InCl}_3\) has been applied as a useful bone marrow seeking agent.\(^1-3\) Except for lung tumors, pulmonary uptake of \(^{111}\text{InCl}_3\) has been reported in a case with idiopathic myelofibrosis\(^5\) and in a case with liver cirrhosis.\(^6\) In these cases, autopsy has revealed extramedullary hematopoiesis in the lungs, thereby supporting the usefulness of \(^{111}\text{InCl}_3\) for bone marrow imaging. In addition, after intravenous injection of \(^{111}\text{InCl}_3\), \(^{111}\text{In}\) binds to transferrin to form \(^{111}\text{In}\)-transferrin. And since \(^{111}\text{In}\)-transferrin is a stable blood-pool imaging agent, increased pulmonary uptake of \(^{111}\text{InCl}_3\) has been shown by dynamic scintigraphy in a canine model with pulmonary edema.\(^7\)

In the present case, autopsy revealed that infiltration of neutrophils or macrophages was not remarkable, but aspergillosis was invasive and associated with extensive anemic infarction of the lungs. The increase in venule or capillary permeability of the lesion may contribute to \(^{111}\text{InCl}_3\) uptake, but the precise uptake mechanism was uncertain.

In conclusion, unusual pulmonary uptake of \(^{111}\text{InCl}_3\) due to pulmonary aspergillosis was recognized in a
Fig. 1 111InCl$_3$ scintigraphy showed marked decreased bone marrow uptake and abnormal pulmonary uptake.

Fig. 2 Chest radiograph showed infiltrative shadow concordant with 111InCl$_3$ uptake.

Fig. 3 Autopsy revealed pulmonary aspergillosis (A: Gross appearance of the lung, B: H & E stain).

patient with aplastic anemia. This case suggested the need to consider pulmonary aspergillosis in the differential diagnosis of pulmonary 111InCl$_3$ uptake.

ACKNOWLEDGMENTS

The authors thank Mr. Masahiro Takayama, Mr. Takashi Tohryudani and Miss Yumiko Tsuda for their valuable assistance.

REFERENCES

2. MuNeil BJ, Holman BL, Button LN, Rosenthal DS. Use of

