Prognosis of hypertrophic cardiomyopathy: Assessment by 123I-BMIPP (β-methyl-p-($(^{123}$I)iodophenyl pentadecanoic acid) myocardial single photon emission computed tomography

Tsunehiko Nishimura,1 Seiki Nagata,2 Toshiisa Uehara,1 Takakazu Morozumi,1 Yoshihio Ishida,2 Tomonuki Nakata,3 Osamu Ishura,4 Chinori Kurata,4 Yasushi Wakahayashi,4 Hitoki Sugihara,5 Katsuichi Otoku,6 Toyoufumi Wada6 and Yoshinori Koga6

1Department of Tracer Kinetics and Nuclear Medicine, Osaka University, Medical School
2Department of Cardiology and Department of Nuclear Medicine, National Cardiovascular Center
3Second Department of Internal Medicine, Sapporo Medicine University
4Third Department of Internal Medicine, Hamamatsu University, School of Medicine
5Second Department of Internal Medicine, Kyoto Prefectural University of Medicine
6Third Department of Internal Medicine, Kurume University, School of Medicine

123I-BMIPP (β-methyl-iodophenyl pentadecanoic acid) has shown unique properties for potential use in assessing myocardial metabolism. Previous basic and clinical studies demonstrated that the disturbances of myocardial metabolism precede the occurrence of myocardial perfusion abnormalities by using 201TI in hypertrophic myocardium. The present study was therefore undertaken to determine whether or not 123I-BMIPP myocardial SPECT is useful in predicting the prognosis of hypertrophic cardiomyopathy (HCM) in 65 patients in 6 facilities. There were 33 patients with non-obstructive HCM, 12 with obstructive HCM, 12 with apical HCM and 8 with dilated phase HCM. Fasted patients at rest received an intravenous injection of 111 MBq of 75I-BMIPP. Twenty to thirty minutes later, myocardial SPECT was carried out. The BMIPP severity score (BMIPP SS) was evaluated semiquantitatively by using representative short axial SPECT images. We followed up the incidence of cardiac events for a mean period of 3.0 ± 0.6 years. Cardiac events occurred in 13 patients. Of these, 11 developed heart failure and 6 died (4 from heart failure and 2 from sudden death). The BMIPP SS in the dilated-phase HCM was significantly higher than that in the remaining HCM patients. The BMIPP SS for the survivors was significantly lower than that for the non-survivors. The BMIPP SS was particularly high in patients with fatal heart failure. Furthermore, there was a close negative correlation between the BMIPP SS and percent fractional shortening measured by echocardiography ($r = -0.49$). Finally, the mortality over the three years increased according to the extent of the BMIPP SS. In conclusion, these results indicate that the BMIPP SS is useful in evaluating the severity of HCM. We conclude that 123I-BMIPP is a valuable metabolic tracer in predicting the outcome of HCM.

Key words: myocardial metabolic imaging, 123I-BMIPP (β-methyl-iodophenyl pentadecanoic acid), hypertrophic cardiomyopathy, prognosis